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“... I know of scarcely anything so apt to impress the imagination as the 

wonderful form of cosmic order expressed by the "Law of Frequency of 

Error". The law would have been personified by the Greeks and deified, 

if they had known of it. It reigns with serenity and in complete self-

effacement, amidst the wildest confusion. The huger the mob, and the 

greater the apparent anarchy, the more perfect is its sway. It is the 

supreme law of Unreason. Whenever a large sample of chaotic elements 

are taken in hand and marshalled in the order of their magnitude, an 

unsuspected and most beautiful form of regularity proves to have been 

latent all along...” 

 
Sir Francis Galton for the Central Limit Theorem 

Natural Inheritance, 1889  
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Preface 
 
 
A major task of most countries is the improvement of their data collection programmes relating to agricultural 
statistics, including fisheries and forestry. The advantage of sample-based fisheries statistical systems is that 
they can make large-scale data collection programmes more affordable when sharp limitations exist with 
regards to human resources and availability of operational funds. The Environment Agency of Abu Dhabi 
(EAD) has long recognized these needs and over the past period it has intended to make use of training 
materials and methodological/operational guidelines with the view of assisting its staff in their efforts to 
improve their performance in their field and office functions and responsibilities. This document was prepared 
as a principal training component of the UAE National Fisheries Information System (UAE-NFIS). 
 
Data collection on catch, fishing effort, first-sale prices and average fish size is a key factor for basic fisheries 
statistical studies. This means that a statistical system that operates on a regular basis is not an end in itself 
but a valuable source of information and data that serves a wide variety of purposes. Consequently a regular 
fisheries statistical programme is judged with two criteria: (i) whether it operates in a cost-effective manner 
(and this concerns its developers and operators) and, (ii) whether its results are of good utility when diffused 
to their intended audience. This training course mainly concerns the second criterion and its objective is to 
provide system developers and operators with the theoretical basis for improving the methodological and 
operational aspects of their data analyses.      
 
This document contains 10 chapters which will be dealt with in phases, following the schedule of the 
consultant’s missions to the country. Some chapters have already appeared in earlier documents but it was 
thought that an integrated training document would facilitate the understanding of inter-related theoretical 
aspects. It is hoped that this manual will assist users to better explore the UAE-NFIS statistical database that 
has been implemented in 2018.  
 
 

Constantine Stamatopoulos, PhD 
Senior Advisor – Fisheries Statistics 

Project for the Sustainable Management of Fisheries Resources in UAE  
 

Abu Dhabi, January 2018  
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Chapter 1: Determining populations in sample-based fisheries surveys 
 

Understanding the exact type and size of the population from which samples will be regularly 

collected is a prerequisite for a successful implementation of a fisheries statistical monitoring 

programme. There is one and only one way to achieving this and it simply consists of considering 

the population of answers that would result from a hypothetical census which would statistically 

cover all events in space and time. Such a census is always assumed to take place within a statistical 

context consisting of: (i) a month, (ii) a geographical stratum and, (iii) a specific boat-gear 

category.  

 

1.1 Population of landings 

To determine the population of landings LN  of a specific boat-gear category in a stratum and 

during a month, the following information is required: 

 

(a) The calendar days D ; 

(b) The average duration d  of a fishing trip of the boat-gear in question; 

(c) The number of boats-gears B  that are operational during the month. A boat-gear is 

considered operational if it has made at least one trip during the month. 

A boat-gear can on the average make D /d  landings during the D  days, hence the number of 

landings will be: 

 

LN  = B x D / d         (1.1) 

 

Example 1 

Assuming the month of September 2015 and 250 operational speedboats with miscellaneous gear 

in the stratum (port) of Doha, then the following calculations apply. 

- The number of calendar days is D  = 30. 

- The average trip duration is d  = 1. 

- The number of boats-gears is B = 250. 

The population size of landings will thus be obtained from expression (1): LN  = 250 x 30/1= 7500 

landings. 
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Example 2 

Assuming the month of September 2015 and 100 operational launches with traps in the stratum 

(port) of Al Wakra. The average trip duration is 3 days. The following calculations apply. 

- The number of calendar days is D  = 30. 

- The average trip duration is d  = 3. 

- The number of boats-gears is B = 100. 

The population size of landings will thus be obtained from expression (1): LN  = 100 x 30/3= 1000 

landings. 

 

1.2 Population of boat-gear activities 

In order to determine the Probability Boat Active (PBA) of a boat-gear category, the sampling 

scenario in use by Samaq Web is to interview fishermen on a weekly basis with regards to their 

fishing activities during last week. In some cases the question concerns the numbers of days at sea 

during past month and it is asked at the end of the reference month.  

In the case of weekly samples the population of boat-gear activities EN  is determined as follows.  

Assuming that a census has been conducted on a weekly basis covering all operational boats. 

Consequently each week will produce B  answers each referring to any of 0, 1, 2, 3, 4, 5, 6, or 7 

days at sea. At the end of the month we will have collected 4 x B answers. Thus the size of the 

population of boat-gear activities EN  will be: 

 

EN  = 4 x B        (1.2) 

 

Likewise in the case of a monthly census each month will produce B  answers each referring to 1, 

2, … , 30 days at sea. Thus the size of the population of boat-gear activities EN  will be equal to 

B. 

 

EN  = B        (1.3) 

 

Sections 1.1 and 1.2 are relevant to the spatial accuracy of landings and effort. All populations are 

convex, a fact that will simplify the calculation process. However, depending on the size of the 

populations there might be a need for a parallel computation of spatial accuracy using two 

completely independent methods that are referred to as Small Population Sampling Theory (SPST) 

and Large Population Sampling Theory (LPST) respectively.  

 

1.3 Populations for temporal accuracy 

Spatial accuracy measures the effectiveness of sampling operations in terms of amounts of samples 

collected over a reference period (i.e. a month). This however is not enough to ensure that all 

possible effort has been made to reduce bias in the estimates. For instance, if 32 landings have 

been collected on a single sampling day and none in the rest of the month, then the spatial accuracy 

would be over 90% but there would also be a high risk of bias if the fishing day in question has 

been particularly bad (negative bias) or particularly good (positive bias). This means that in order 

to ensure that the frequency of sampling is as adequate as the amount of samples collected, 
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sampling operations ought to be distributed evenly over the reference period. The question then 

arises as to how many days should be needed.  

 

Conceptually the problem is quite equivalent to that of the landings and boat-gear activities. Let 

us assume that a census has been conducted in space and time for landings and that on each day 

we have a complete picture of all landings that have occurred during this day. If the census had 

been conducted for November 2014 then we would have 30 different data sets covering all landings 

in the month. Thus if we intend to sample a number of days and estimate the monthly total the 

population size would be 30. 

 

The temporal accuracy does not apply to effort samples since these are conducted at regular 

intervals and for the selected boats-gears they statistically cover the entire month. 

 

Temporal accuracy always uses the Small Population Sampling Theory (SPST) methodology. 

 

1.4 Closed seasons 

So far we have examined the populations of landings and effort on the basis of a full calendar 

month with 28, 29, 30 or 31 days. In the case where a closed season begins or ends within a 

reference month, then the calendar days must be adjusted accordingly. 
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Chapter 2: Population variance and sampling error 
 

Once a population has been identified it is possible to estimate its mean value and the variability 

of its elements. Generally the mean of a population is not known unless a census has been 

conducted. The only way to obtain an idea of its mean value is to collect samples and approximate 

the population mean using the sample mean. 

 

Assuming a population of N elements and a random sample of size n consisting of elements (

n1 x,...,x ),  then the sample mean  x  is given by: 

 

 ix
n

1
x          (2.1) 

 

The sample mean calculated as in (2.1) is an unbiased estimate of the population mean. The term 

“unbiased estimate” implies that if it were possible to draw all possible samples of size n and each 

time calculating the respective sample mean, then the mean of the sample means would coincide 

with the population mean. 

 

Likewise the sample variance: 

 

2

i

2 )xx(
1n

1
s 


          (2.2) 

 

is also an unbiased estimate of the population variance. 

 

Actually the main task is to obtain an idea of the variability of the sample mean and not of the 

population. For this purpose we use the sample variance to calculate the variance of the mean: 

 

)
N

n
1(

n

s
s

2
2

x          (2.3) 

 

It is recalled that n and N are the sizes of the sample and the population respectively. When the 

population is large the above expression is reduced to: 

n

s
s

2
2

x           (2.4) 

Expressions (2.3) and (2.4) indicate that irrespective of the variability of the population, the 

variance of the sample mean tends to become zero as n increases. Generally, the sample mean is 

assumed to be found within a confidence interval whose lower and upper limits are calculated as 

follows: 
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2
xx ss   (sampling error)       (2.5) 

 

Lower limit: xs96.1xx    Upper limit: xs96.1xx    (2.6) 

 

The coefficient 1.96 is used to assure that the true population mean lies within the confidence 

interval determined by (2.6) with a probability of 95%. Using a lower probability it would make 

the interval narrower but riskier. Generally the confidence level of 95% is used in large-scale 

fisheries surveys. 

 

The final step is to express the sampling error in relative rather than in actual terms. A typical 

indicator that expresses the relative error is the coefficient of variation (CV) which usually takes 

the following percentage form: 

 

x

s
100CV x          (2.7) 

 

As a last note this section ought to pay tribute to the Central Limit Theorem which is literally 

“central” to all methodologies and operations relating to sample-based fisheries surveys and it is 

the basis for constructing confidence limits such as those described by expressions (2.3) – (2.7). 

Its implications are fundamental. Whatever the shape of the distribution of a population, the 

distribution of the sample means and of the sample variances are obeying the normal distribution, 

provided that many samples are drawn at random.  

 

This theorem has an interesting history. Its first version was postulated by the mathematician de 

Moivre who in 1733 used the normal distribution to approximate the distribution of the number of 

heads resulting from many tosses of a fair coin. This finding was nearly forgotten until the French 

mathematician Pierre-Simon Laplace rescued it from obscurity in his monumental work Théorie 

analytique des probabilités, which was published in 1812. Laplace expanded De Moivre's finding 

by approximating the binomial distribution with the normal distribution. But as with De Moivre, 

Laplace's finding received little attention in his own time. It was not until the nineteenth century 

when, in 1901, the Russian mathematician Aleksandr Lyapunov defined it in general terms and 

proved precisely how it worked mathematically. Nowadays, the central limit theorem is considered 

to be the official sovereign of probability theory. 

Sir Francis Galton, a principal founder of statistical surveys, described the Central Limit Theorem 

in the exhilarating terms shown in the preface. 

  

https://en.wikipedia.org/wiki/Pierre-Simon_Laplace
https://en.wikipedia.org/wiki/Aleksandr_Lyapunov
https://en.wikipedia.org/wiki/Francis_Galton


UAE-NFIS  Training module 2 

 

 

 
Page 10 

 

 

Chapter 3: Estimation of Catch/Effort Variables 
 

The objective of a sample-based fisheries statistical monitoring programme is to regularly collect 

catch and effort data on a monthly basis and produce estimates of total catch, catch by species, 

fishing effort by boat-gear, species prices and values and, average fish weight. To achieve this, a 

catch/effort assessment system collects data to populate the generic catch/effort equation: 

 

ESTIMATED CATCH = (Sample overall CPUE) x Estimated Effort  (3.1) 

 

Equation 3.1 is repeated for each statistical entity that is a month, a port-stratum and a boat-gear 

category. 

 

3.1 Estimation of overall CPUE 

 

Assuming that several landings have been collected during a month in a port-stratum and for a 

specific boat-gear category. If in each sample the total landing of species is c and the duration of 

the related fishing trip is d, then the overall CPUE is estimated by: 

 





d

q
CPUE          (3.2) 

 

For the species that are found in the landings over a month their proportions to the total sample 

landings will be: 

 





q

)q_species(
pi         (3.3) 

 

3.2 Estimation of effort 

 

The generic formula for estimating monthly fishing effort of a boat-gear at a port-stratum is the 

following: 

 

Estimated Effort  = (PBA) x (B) x (D)     (3.4) 

 

where: 

 PBA is the Probability of a boat-gear being active on any day during the month; 

 B is the total number of operational boats-gears enumerated at the end of a reference month; 

 D is the number of calendar days in the month. Except for cases of closed seasons, this 

number is equal to the number of days in a month, i.e. 28, 29, 30 or 31. 
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3.2 Estimation of PBA 

 

There are several ways of estimating the sample PBA. In UAE the two scenarios in use are: 

 

(a) At the end of each week fishermen are asked to specify the number of days worked during 

past week. The possible answers are any of ia =0, 1, … , 7 days. Assuming n samples of 

such answers, then the sample PBA s computed as: 

 
n7

a
PBA

i
         (3.5) 

 

(b) At the end of each month (with calendar days D), fishermen are asked to specify the number 

of days worked during the month. The possible answers 1 , . . . , D days, where D is the 

number of days in the month. Note that 0 is not a possible answer because an operational 

boat must make at least one fishing trip during the month. Assuming n samples of such 

answers, then the sample PBA is computed as: 

nD

a
PBA

i
         (3.6) 

 

Once the PBA has been estimated by either (3.5) or (3.6), the total effort is estimated from (3.4) 

and the total catch from (3.1). 

 

3.3 Catch by species 

 

Catch by species is estimated on the basis of sample species proportions given in (3.3). Thus 

estimated catch by species is computed as: 

 

Species catch = (Species proportion) x (Estimated Total Catch)  (3.7) 

Species CPUE = (Species proportion) x (Overall Sample CPUE)  (3.8) 

 

 

 

 

3.4 Species prices 

 

Species prices need not be collected at each landing. In theory one sample would be enough but 

the reliability of price estimates is proportional to the number of samples involving prices. 

Assuming that m samples contain collected prices, then the weighted average price of a species is 

calculated as: 

 

i

ii

i
q

pq
p




          (3.9) 
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where: 

 

 iq  is a non-zero  species quantity over a month; 

 ip  is the collected price. 

Gaps in the collection of prices cause inconsistent estimates of prices and values when monthly 

estimates a are aggregated in variable grouping schemes. For instance, average prices and values 

by boat-gear will not be 100% comparable to totals by species. 

 

To avoid such discrepancies Samaq Web uses a sophisticated technique of price estimation in 

various stages of reliability. The result is that any grouping of estimates will result in comparable 

prices and values. 

 

3.5 Average species weight 

 

Along with catch, effort, and prices, Samaq Web collects information on the number of individuals 

appearing in the landings. There are three options available for the data collectors: 

 

 For small fish they collect the number of individuals in one Kg. 

 For fish of average size they collect the total number of individuals in the catch. 

 For large fish they estimate the average weight of an individual. 

Samaq Web analyzes the size data collected and for each statistical entity of a month, port-stratum 

and boat-gear category it furnishes the following two estimates: 

 

1. Average weight of a species; 

2. Numbers of individuals caught. 
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Chapter 4: Precision and Accuracy in Catch/Effort Estimates 
 

 

4.1 Introduction 

 

The Precision of an estimator (such as the sample CPUE or the sample PBA) expresses the degree 

of closeness among the results of a sampling process or, in dispersion terms, how the samples are 

placed with respect to their mean.  

 

The Accuracy of an estimator expresses the closeness of the resulting estimates to the actual (and 

unknown) population means. 

 

Although the terms Accuracy and Precision are more or less synonymous in colloquial terms, they 

are well distinct in a statistical context. For instance, a set of sampling results may be exact but not 

precise, or precise but not accurate, or neither precise nor accurate, or both accurate and precise 

(see Fig. 4.1). Furthermore, when a survey has an inherent systematic error (or bias), this error will 

not be resolved by increasing the sample size; the survey will continue to generate biased results. 

If the samples remain the same but the systematic error has been identified and resolved then this 

action will improve the accuracy but not the precision.  

 

 

 
 
Figure 4.1 – Illustration of the difference between precision and accuracy: Case 1 -results that are neither 

precise nor accurate. Case 2 – results are both accurate and precise. Case 3 - exact results but somewhat 

dispersed (not precise). Case 4 - results are biased with good precision but completely inaccurate. 

 

 

The index most commonly used to measure the precision of a sampling process is the Coefficient 

of Variation (CV). This index is formulated on the basis of the standard error as discussed in 

Chapter 2. It is a very useful indicator and is always computed along with other statistics. Its 

advantages are: (i) simple to calculate and, (ii) simple to interpret. However, the CV is not 

applicable to populations of small size because the central limit theorem (refer to Chapter 2) is no 

longer in force. Most importantly, the CV is variable and cannot be used in advance in order to 

plan a sample-based survey. 

 

For all these reasons sample-based programmes make use of an additional relative index 

(pessimistic accuracy) that will be discussed in detail in the coming sections. 
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4.2 Definition of accuracy A 

Let us consider a population with  N  elements :  P = {Y1 ,  Y2  , . . . , YN} and a population 

mean Y . 
Consider also a sample of size  n : {X1 ,  X2  , . . . , Xn} and its mean  X  which is an unbiased 

estimate of  Y  .   

 

In relative terms the accuracy (i.e. proximity) of  X  with respect to Y  is expressed by the relative 

accuracy index: 

 

                  
R

XY
1A


      (4.2.1) 

 

where  R  is the amplitude or range  minmax YY   of the population values. 

 

4.3 Normalization of populations 

 

The term normalization (or standardization) is used to describe a specific type of numerical 

transformation that applies to a finite population and in a manner that each population element is 

uniquely mapped to a number between 0 and 1 inclusive. 

 

Let us again consider a population of  N  elements,  P = {Y1 ,  Y2  , . . . , YN}, with a population 

mean Y . We then apply the following linear transformation to each population element: 

 

minmax

mini
i

YY

YY
u




 , i = 1 , 2 , . . . , N  (4.3.1) 

 

For the expression above the following propositions are true: 

 

1. The minimum element   Ymin will be mapped to  0.       

2. The maximum element   Ymax  will be mapped to  1.                                                                   

3. All other elements will have values between and 1.  

4. The range of the normalized population will be 1.  

5. The mean   U  of the transformed population will be equal to:  
minmax

min

YY

YY




. 

Proof: 

 

minmax

minmin
minii

YY

YY

NR

NY

NR

YN
)YY(

NR

1
u

N

1
U




   
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4.5 Equivalence of accuracy between original and normalized populations 

 

Let us consider a population of   N  elements,  P = {Y1 ,  Y2  , . . . , YN}, with a population 

mean  Y .  Consider also a sample of size  n : {X1 ,  X2  , . . . , Xn } and a sample mean  X  

that is an unbiased estimate of  Y .  

 

Following that we examine the sample of  n  normalized elements: {u1 ,  u2  , . . . , un }  that 

corresponds to the original sample {X1 ,  X2  , . . . , Xn }. According to equation (4.2.1)  the 

accuracy of  X  will be given as:  
R

XY
1A


 . 

 

Likewise the accuracy uA  of the normalized sample mean  u   of {u1 ,  u2  , . . . , un }  will be: 

 

A
R

XY
1

1

R

YX

R

YY

1
1

uU
1A

minmin

u 












  

 

We have thus proved that the accuracy of a sample drawn from a finite population is equal to the 

accuracy of the corresponding sample taken from the normalized population. 

 

The above property is very significant for the subsequent analysis of accuracy since it has 

eliminated the population range from the variables involved. As a result accuracy can now 

continually refer to normalized population with range R = 1. Expression (4.2.1) can thus take the 

simplified form:  

 

XY1A      (4.5.1) 

 

where X  and Y refer now to normalized elements between 0 and 1.   

 

We are now going to examine again the equations concerning confidence limits (refer to Chapter 

2). This can be summarized to take the form: 

 

X
s96.1XY   

 

and it means that at 95% confidence level the error is equal to  
X

s96.1   and consequently the above 

expression takes the form:  

 

N

n
1

n

s
96.11s96.11A

X
    (4.5.2) 

 

where  s  is the standard deviation of a sample of normalized elements. 
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It can thus be concluded that the accuracy of an estimation process is a function of the population 

size  N , the sample size  n  and the standard deviation of the sample.  

 

Knowing the accuracy resulting from a sample is certainly useful but it should be far more useful 

if accuracy were known on an a priori basis which would permit determining the sample size 

required to achieve a pre-set accuracy level, for instance 95%. This is the most frequent question 

during the planning phase of a large-scale data collection programme. This problem will be 

discussed in the next session where the concept of  “pessimistic accuracy”  is introduced. 

 

4.6 Probabilistic Pessimistic Accuracy 
 

Let us again examine the normalized expression for accuracy:  

 

N

n
1

n

s
96.11A    (4.6.1)    

 

Our new objective is to set-up an upper limit for the standard deviation s in samples drawn from 

populations that are either convex or orthogonal (see Figure 4.6.1). These two types of populations 

are the ones encountered in the fisheries survey programme of UAE. The third type concerns 

concave populations that are present only in sampling scenarios where the sample Probability Boat 

Active (PBA) is measured as the ratio (boat-gears active) / (boat-gears examined). 

 

 

 

 
Figure 4.6.1  Convex, orthogonal (or random) and concave populations. In convex populations the values tend 

to concentrate around the mean. In orthogonal populations all values have about the same frequency. In 

concave populations values tend to move away from the mean. 
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According to statistical theory the standard deviation of a normalized population that is orthogonal 

(or random or uniform) is always higher than the standard deviation of a normalized convex 

population. This upper limit is given by: 

 

4

1

)1N(6

1N2
R 






     

(4.6.2) 

 

By substituting the standard deviation s in (4.6.1) by its maximum value given by (4.6.2) we 

obtain:  

N

n
1

n
96.11A R 


      (4.6.3) 

 

The right term of the last relation determines a lower limit (i.e. a pessimistic accuracy) for all 

accuracies resulting from samples of size n that were drawn from a convex or random population. 

It specifies that all accuracies will be greater than this lower limit relation with a probability of 

95% (equivalent to stating that only 5% of the accuracies might fall below that limit). 

 

Concerning planning of surveys relation (4.6.3) provides exactly what a survey planner is looking 

for. Only the population size N is needed. For any pessimistic accuracy level (a practical starting 

level is 90%), we can determine the sample size that satisfies that level. To be noted that the actual 

accuracy will never be known a priori. All we will know is that the resulting accuracy will have a 

probability of 95% to be above the limit determined by (4.6.3). 

 

 

 

 
Figure 4.6.2  Fluctuation of sampling accuracy (blue line) when sample size varies between 1 and population 

size. The red line shows the pessimistic accuracy calculated by expression 4.6.3 for a convex or random 

population. Overall, all accuracy values lie above the pessimistic accuracy curve with few exceptions 

constituting about 5% of all values. 

 

It is recalled that: 

 

 The formulae discussed earlier are valid for convex or random populations; 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8



UAE-NFIS  Training module 2 

 

 

 
Page 18 

 The exact accuracy is never known. What is known is its lower limit (pessimistic accuracy). 

 Since the accuracy lower limit described in 4.6.3 can be computed at varying confidence 

levels (i.e. 90%, 95%, etc.), the pessimistic accuracy described above is a Probabilistic 

Accuracy. 
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Chapter 5: Non-Probabilistic Accuracy for small populations 

 
 

5.1 Introduction 

 

In the previous chapter the pessimistic probabilistic accuracy was defined on the basis of 

expression 4.6.3 which is repeated below: 

 

N

n
1

n
96.11A R 


  

 

It was stated that the right term of the equation constitutes a lower accuracy limit for all random or 

convex populations of size N. Thus, this lower limit (or pessimistic accuracy) can be illustrated as 

a known limit curve when sample size runs from 1 to N (Figure 4.6.2). 

 

However as already stated this lower limit is based on the assumption that the central limit theorem 

(which ensures that the distribution of the sample means is normal) is in force. This is generally 

not true when the populations under study are small, i.e. they consist of 30, 50 or 100 elements. In 

such cases the pessimistic accuracy is excessively penalizing for the data collection since the 

required sample size for a desired accuracy level, say 90%, is too large. 

 

This is illustrated in Figure 5.1. Here we have a population with size N=50. The dotted line 

represents the pessimistic accuracy curve drawn for all sample sizes 1-50. It is noted that the actual 

accuracy fluctuation stays well above the dotted line in most part of the sample size range. In 

practical terms this means that to achieve a given level of accuracy the probabilistic accuracy 

method will require more samples that are really required. In fact we should be looking for an 

improved accuracy curve that would look like the continuous curve of the same Figure 5.1.  

 

To achieve such a curve the accuracy approach changes drastically and becomes more elaborate 

since it has to be based on algebraic and geometrical rather than probabilistic   concepts.  
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Figure 5.1 Pessimistic accuracy curve (dotted line) applied to a small population of size N=50. Notice that the 

fluctuation of accuracy stays well above the dotted line. 

 

 

5.2 Variables and parameters of the non-probabilistic approach. 

 

When the population size is limited (i.e. 15, 30, 50, 100, 500, 1000), it is essential to calculate 

accuracy using a non-probabilistic approach. The equation of accuracy for small populations is 

given by: 

 
kx

21 NaaA        (5.2.1) 

 

where the variable x is the ratio 
)Nln(

)nln(
 and the three parameters  k,a,a 21  are calculated by means 

of the following intermediate parameters: 

 

 For convex populations (as in UAE) an intermediate parameter  W  is calculated as:  

)
N

1
1(75,0W   

 For concave populations (not applicable in UAE) the intermediate parameter  W  is 

calculated as:   )e5.01ln(1W N

1

  

 An intermediate parameter  a  is calculated as :  
1N

1N

)1N(

WN2
a

2

2







  

 An intermediate parameter  g  is calculated as:   
N

a1
ag


  

 An intermediate parameter  S  is calculated as:  )
N

1

NlnN

1

Nln

1
)(a1(S   

 The equation parameter   k  is then given by:  )
gS1

S
ln(

Nln

2
k




  
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 The equation parameter   a2   is calculated as:  
1gS2

)gS1(
a

2

2



  

 The equation parameter   a1  is calculated as:  21 aga   

 

The curve defined by (5.1) is not a limit-curve but an approximate curve. This means that it 

provides a more “economical” sample size than the one resulting from the probabilistic approach.   

 

This approach is particularly useful in cases where sampling is done from a population of 28, 29, 

30 or 31 days. In such a case the non-probabilistic approach provides more economical results than 

the probabilistic one. An example is provided in Table 5.2.1. Assuming a desired accuracy level 

of 90% (or 0.90) we notice that for the same sample size, for instance n=7, the non-probabilistic 

approach results in A=0.909, while the probabilistic one requires 17 samples to achieve the same 

level. 
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Table 5.2.1 The two accuracy approaches in a population of 30 days 

 

Sample  
size 

Non-probabilistic 
Accuracy A 

Probabilistic 
Accuracy A 

      

1 0,500 0,416 

2 0,773 0,600 

3 0,825 0,674 

4 0,854 0,726 

5 0,879 0,757 

6 0,895 0,786 

7 0,909 0,804 

8 0,919 0,821 

9 0,931 0,833 

10 0,936 0,849 

11 0,945 0,857 

12 0,950 0,868 

13 0,955 0,876 

14 0,959 0,883 

15 0,964 0,890 

16 0,968 0,898 

17 0,972 0,905 

18 0,974 0,912 

19 0,978 0,916 

20 0,980 0,924 

21 0,984 0,928 

22 0,986 0,936 

23 0,987 0,940 

24 0,989 0,944 

25 0,991 0,949 

26 0,992 0,954 

27 0,994 0,959 

28 0,997 0,972 

29 0,999 0,980 

30 1.000 1.000 
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Chapter 6: Synthesis of accuracy indicators 
 

 

 

6.1 Spatial and temporal accuracy 

 

It has so far been shown that the accuracy of catch/effort estimates depends on the number of 

samples collected during a month for a specific boat-gear in a port-stratum. This quantitative 

accuracy, denoted by AQ, is determined, as we have seen, on the basis of the population size and 

the sample size.  

 

In parallel we also examine the temporal accuracy AT which is determined by the number of 

sampling days during the month. This stems from the fact that the frequency of sampling (i.e. the 

number of days in a month on each sampling takes place) is as important as the number of samples 

collected. Let us for instance assume that 32 samples are enough to give an accuracy of at least 

90%. If these samples are collected on a single day, the estimates run the risk of being biased if 

the day selected is either too “good” or too “bad”. It thus becomes evident that the 32 samples must 

be distributed over several days in order to avoid such a risk. The question then is: how many days 

are required to obtain a temporal accuracy AT=90%. 

 

The answer lies in considering the month (for instance September 2015) as a population of N=30 

calendar days. If a hypothetical census has been implemented for the CPUE, we would then have 

30 different actual (i.e. real) CPUE values. How many should be sampled to formulate a CPUE 

estimate with an accuracy AT=90%? 

 

Evidently the non-probabilistic approach for small populations should be used (refer to Chapter 5, 

Table 5.2.1). Using this approach the answer would be 7 days. In practice we use 8 days since in 

this manner we can plan the survey to sample twice a week, assuming four weeks in a month. 

 

6.2 Overall Accuracy  

 

The spatial and temporal accuracy indicators AQ and AT are always computed for the CPUE. 

 

Concerning the PBA for effort estimation, the temporal accuracy is not needed because the 

sampling scenario in use by UAE-NFIS collects boat-gear activities using a sampling-in-space and 

census-in-time approach. In such a manner the temporal accuracy for the PBA is 100%. 

 

The overall accuracy A for the monthly estimates is determined as the minimum value of: 

 

 The spatial accuracy of the CPUE; 
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 The temporal accuracy of the CPUE; 

 The spatial accuracy of the PBA. 

 

The logic behind the above method is simple: if a census had been conducted for any two of the 

above three elements and a sample-based survey for the third, then the resulting accuracy would 

depend on the sample-based estimate. Hence (here again we use a pessimistic approach), the 

overall accuracy should be set to the lowest accuracy of the three. 

 

A practical conclusion is that the spatial and temporal accuracy ought to have comparable values 

else there would be cases of wasted data collection effort. For instance if 128 landing samples have 

been taken aiming at a spatial accuracy of 95%, then the frequency of sampling should be increased 

to 12 sampling days and not stay at 8 (refer to Table 5.2.1). By limiting the sampling frequency to 

8 days there would be no improvement to the overall accuracy since the system would still select 

90%  (being the lower of the two)  

 

6.3 Sampling Uniformity Index (SUI) 

 

In Section 6.2 describing the overall accuracy it was shown that the frequency of sampling is as 

important as the sample size and that the number of sampling days should be selected in a manner 

that the spatial and temporal accuracy are comparable. 

 

The temporal aspect of sampling issue does not end here. Sufficient samples collected over a 

sufficient number of days are not enough if they are not uniformly distributed. For instance, we 

intuitively know that 32 samples taken uniformly over 8 days should be preferable to a scheme 

where the same 32 samples are distributed too irregularly (refer to Figure 6.3.1). How can we 

measure the uniformity aspect? 

 

 
Figure 6.3.1 Illustration of a uniform and a non-uniform sampling scheme. Both use the same numbers of 

samples and sampling days. Both have the same spatial and temporal accuracy. However the first scheme is 

better because it distributes samples evenly over the sampling days. 

 

The process is better presented using a numerical example. 

 

Consider a large population and a sample of 32 elements collected over 8 days. The following data 

collection scheme was used: 

 

Day  1 2 3 4 5 6 7 8 

  ___________________________________________ 

Samples 4 1 1 6 7 1 1 11 
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According to the theory already presented the temporal accuracy will be 90% and the spatial one 

will also be 90%. 

 

We then analyze the uniformity of the samples over time as follows: 

 

a) We calculate the average number of samples per day. In this case the average is equal to 

(32 samples) / (8 days) = 4 samples per day. 

b) On each day we calculate the ratio: (n. samples)/average. If the result is >1 it is replaced 

by 1.  

 

Ratio 1: 4/4 = 1 

Ratio 2: 1/4 = 0.25 

Ratio 3: 1/4 = 0.25 

Ratio 4: 6/4 > 1 = 1 

Ratio 5: 7/4 > 1 = 1 

Ratio 6: 1/4 = 0.25 

Ratio 7: 1/4 = 0.25 

Ratio 8: 11/4 > 1 = 1 

 

c) We next sum up the ratios and round up: (for instance 5.2 = 5,  5.7 = 6). 

 

Sum = 5 

 

d) The resulting sum specifies the number of virtual days which theoretically penalizes the 

temporal accuracy AT.  

e) The ratio 5/8 = 0.625 is defined as Sampling Uniformity Index (SUI). The closer SUI is to 

1 the more uniform the sampling scheme.  

 
In theoretical terms SUI is calculated as follows: 

 

(i) n is the total number of samples taken over the month. 

(ii) d is the number of sampling days. 

(iii) in (i=1,2,…,d) are the samples per day. 

(iv) n  is the arithmetic mean of in . 

(v) iv  is the ratio in / n . If iv >1 it is set to 1. 

(vi) v is the sum of all iv  rounded up. 

 

SUI is then computed as the fraction:  v / d. 

 

  



UAE-NFIS  Training module 2 

 

 

 
Page 26 

 

 

Chapter 7: Estimation process and statistical diagnostics in UAE-NFIS 
 

 

In this chapter a full UAE-NFIS example is presented which synthesizes all estimation approaches 

and statistical indicators so far discussed, namely:  

 

Estimated variables 

CPUE, PBA, prices, catch, effort and average fish size.  

 

Statistical indicators 

Coefficient of variation, spatial and temporal accuracy, SUI. 

 

7.1 Estimation of fishing effort 

 

Table 7.1 illustrates a full example of effort estimation for August 2015, the port-stratum of Al Khor 

and for launches with traps. Similar estimations have been computed for all statistical entities 

involved. 

 

The estimated effort is 1179 days. It is easy to verify that this estimate is obtained by multiplying 

the number of boats-gears (67) by the sample PBA (0.568) and by the active days (31). 

 

The spatial accuracy for PBA is 0.95 and the method of its calculation is SPST, the non-

probabilistic approach used for small populations. It is recalled that UAE-NFIS also calculated 

accuracy with the probabilistic approach for medium-large populations. The SPST was selected 

since it apparently furnished a better accuracy value. However, this value (0.95) is not the best in 

the estimation process with the result that UAE-NFIS displayed an overall accuracy of 0.93 (top 

blue line). 

 

Since in UAE-NFIS the sampling scenario for the PBA is sampling-in-space and census-in-time, 

the temporal accuracy and the associated SUI are equal to 1. 

 

The coefficient of variation (CV) for the PBA (the CV indicates the dispersion of other 

hypothetical PBA sample means around the found mean of 0.568, is very good: only 4.2%. To be 

noted that a CV below 5% is empirically considered good precision, between 5% and 15% a good 

to average precision and above 15% a not good precision. 

 

 
Table 7.1 Estimation of fishing effort 

AL KHOR الخور (Minor stratum) + LB Traps لنش قرقور (Large boats) Accuracy =  0.93  

 
Effort (WEEKLY) 

Est.Effort :              1,179 
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Records :              37 

Boats/Gears :              67 

Active Days :              31.0 

PBA :              0.568 

Spatial Accur. :              0.95 

Method for Accur. :              SPST 

N.days :              - 

Temp. Accur. :              1.00 

Method for Accur. :              - 

SUI :              1.00 

CV (%) :              4.2 % 

 
 

7.2 Estimation of overall CPUE, total catch, price and value 

 

Table 7.2 illustrates a full example of catch estimation for August 2015, the port-stratum of Al Khor 

and for launches with traps. Similar estimations have been computed for all statistical entities 

involved. 

 

The estimated overall CPUE is 191.87 Kg/boat-gear day. Total catch is obtained by multiplying 

this value by the estimated effort computed earlier (1,179 boat-gear days). This is equal to 226,214 

Kg. The difference with the 226,182 Kg shown in the example is due to rounding errors. 

The spatial accuracy for the CPUE PBA is 0.93 and was calculated using the SPST non-

probabilistic approach. Likewise the temporal accuracy used the SPST method for small 

populations (here the population size is N=31) and resulted in 0.97. UAE-NFIS has selected the 

minimum of 0.95 (PBA), 0.93 and 0.97 to represent the overall accuracy of the estimation process. 

 

The CV for the CPUE is rather high: 17%, but not unacceptable. 

 

The SUI is 0.82 which indicates good uniformity of samples collected over the sampling days. 

Lastly the average price (or unit value) of the total catch was estimated to be 17.04 QR/Kg. The 

total value of the catch is thus 17.04 x 226,182 = 3,854,141 QR. The small difference with the 

figure shown in Table 7.2 is due to rounding errors. 
 

Table 7.2 Estimation of overall CPUE, total catch, price and value 
Landings  

Est.catch :              226,182 

Records :              37 

Sample catch :              27,821.0 

Sample effort :              145.0 

CPUE :              191.87 

Aver.price :              17.04 

Est.value :              3,853,044 

Spatial Accur. :              0.93 

Method for Accur. :              SPST 

N.days :              17 
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Temp. Accur. :              0.97 

Method for Accur. :              SPST 

SUI :              0.82 

CV (%) :              17.0 % 

 
 
7.3 Estimation of catch by species, prices and average fish weight 

 

Table 7.3 illustrates a full example of catch-by-species estimation for August 2015, the port-stratum 

of Al Khor and for launches with traps. Similar estimations have been computed for all statistical 

entities involved. 

 

Due to lack of sufficient samples to estimate average fish size, the corresponding column is empty. 

However UAE-NFIS intends to streamline collection of fish weight in the coming months. 

 

To be noted that summing up the species catch we find 226,182 Kg. Likewise the sum of species 

values is the same as the one shown in Table 7.2 
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Table 7.3 Estimation of catch by species, prices and average fish weight 

By species  Aver.weight  
N.fish 

in 
catch  

Price  Value  CPUE  Est.catch  

Baasi باسي Nemipterus bipunctatus (Threadfin 
bream) 

    -         -     19.684 54,731 2.36 2,780 

Boukshina بوقشينة Lethrinus lentjan (Pink ear 
emperor) 

    -         -     10.964 401,114 31.03 36,585 

Farsh فرش Diagramma pictum (Painted sweetlips)     -         -     7.233 28,580 3.35 3,951 

Fasker فسكر Acanthopagrus bifasciatus (Twobar 
seabream) 

    -         -     9.908 17,400 1.49 1,756 

Gane قين Scarus ghobban (Blue-barred parrotfish)     -         -     14.000 6,146 0.37 439 

Hamour هامور Epinephelus coioides (Orange-
spotted grouper) 

    -         -     58.433 556,769 8.08 9,528 

Hamra حمره Lutjanus malabaricus (Malabar blood 
snapper) 

    -         -     27.155 123,188 3.85 4,536 

Jash جش Carangoides bajad (Orangespotted 
trevally) 

    -         -     15.966 170,558 9.06 10,683 

Jid جد Sphyraena flavicauda (Yellowtail barracuda)     -         -     13.680 10,010 0.62 732 

Karari كراري Atule mate (Yellowtail scad)     -         -     17.148 57,716 2.86 3,366 

Kobkob قبقب Portunus pelagicus (Blue swimmimg 
crab) 

    -         -     11.000 3,219 0.25 293 

Koffar كوفر Argyrops spinifer (King soldier bream)     -         -     14.837 277,911 15.89 18,731 

N'aimia نعيمية Pinjalo pinjalo (Pinjalo)     -         -     27.625 64,682 1.99 2,341 

Naiser نيسر Lutjanus fulviflamma (Dory snapper)     -         -     7.439 35,926 4.10 4,829 

Rebeeb ربيب Gnathanodon speciosus (Gold 
toothless treval) 

    -         -     24.075 112,739 3.97 4,683 

Saafi صافي Siganus canaliculatus (Whit-spott 
spinefoot) 

    -         -     27.834 407,319 12.41 14,634 

Saal صال Carangoides chrysophrys (Longnose 
trevally) 

    -         -     17.070 249,800 12.41 14,634 

Laden لدن Epinephelus polylepis (Smallscaled 
grouper) 

    -         -     29.684 41,267 1.18 1,390 

Semaan سمان Epinephelus bleekeri (Duskytail 
grouper) 

    -         -     33.349 209,849 5.34 6,293 

Sh'ari شعري Lethrinus nebulosus (Sprankled 
emperor) 

    -         -     13.133 393,972 25.45 29,999 

Siken سكن Rachycentron canadum (Cobia)     -         -     15.000 2,195 0.12 146 

Sooli سولي Lethrinus microdon (Smalltooth emperor)     -         -     8.882 88,388 8.44 9,951 

Sultan Ibrahim سلطان إبراهيم Parupeneus marga 
(Pearly goatfish) 

    -         -     28.100 4,112 0.12 146 

Tabaan تبان Euthynnus affinis (Kawakawa)     -         -     9.219 132,217 12.17 14,341 

Yanam ينم Plectorhinchus sordidus (Sordid 
rubberlip) 

    -         -     3.667 3,219 0.74 878 

OTHER أنواع أخرى (Miscellaneous)     -         -     14.018 400,016 24.21 28,536 
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Chapter 8: Effort standardization in UAE-NFIS 
 

 

8.1 Introduction 

 

It is generally accepted that when working with a specific boat-gear category (for instance launches 

with traps) fishing mortality is proportional to the total fishing effort exerted by its fishing units. 

When it comes to measure the combined effect of fishing operations of the entire fleet to the 

exploitation of a fish stock, it becomes apparent that adding together effort exerted by different 

boat-gear categories is not always meaningful without first applying effort adjustment to increase 

its compatibility. There are various techniques for addressing such situations, the commonest of 

which is known as “standardization of fishing effort”. In UAE the UAE-NFIS component of the 

National Fisheries Information System has recently incorporated effort standardization routines 

that combine elements of the simple (if not very recent) normalized effort (used by the North Sea 

Round Fish Working Group, ICES, 1980) and relative fishing power developed by Robson (1966). 

Although the existing literature offers a plethora of sophisticated methods (an excellent review is 

the one by Maunder, 2004), it was nevertheless considered preferable to first use approaches that 

(a) are only dependent on catch/effort data from commercial fisheries and, (b) can apply to data of 

(still) limited time coverage.  

 

The need for effort standardization was first pointed out by the Steering Committee of the 

Sustainable Management of Fisheries Resources project and was followed up by the Fisheries 

Department of the Ministry of Environment. Thanks to the collective effort made by field staff and 

the national experts of the Fisheries Department the presented methodology was repeatedly tested 

using data of good quality, completeness and accuracy. It should be noted that the presented 

method is only the first step in introducing effort standardization as a regular operational 

component of UAE-NFIS; the approach in use will be further refined when catch/effort data 

involving more years have been made available.  

 

8.2 Primary variables in effort standardization 

 

In UAE-NFIS the fishing effort exerted by a fishing unit during a fishing trip is measured by the 

duration of the trip and is referred to as “boat-gear days”.  If there are  m  boat-gear categories and 

the statistical monitoring system produces 12 monthly catch/effort estimates per boat-gear category 

(as is the case with UAE-NFIS) then over a reference period of  n  years there will be  (m x 12n)  

monthly effort estimates 
j,iE , i=1…m;   j=1…12n.  

 



UAE-NFIS  Training module 2 

 

 

 
Page 31 

Along with fishing effort the system estimates monthly catch  
j,iC  and Catch-Per-Unit-Effort 

j,iCPUE .  

 

It should be noted here that UAE-NFIS treats combined CPUE’s as weighted averages and not as 

simple arithmetic means of their components. For instance to combine monthly CPUE values of 

the same boat-gear category into a an annual CPUE, the standard UAE-NFIS procedure is to re-

calculate the monthly catch and effort values involved according to the standard formula   

 

 )Effort(/)Catch(CPUE . 

 

Table 8.2.1 illustrates an example of a full set of UAE-NFIS catch/effort estimates for 2014 which 

involves the three primary variables described above.  

 
Table 8.2.1 UAE-NFIS catch/effort data for 2014 (all species) – Accuracy of estimates: 91.7% 

Catch in Kg (01) (02) (03) (04) (05) (06) (07) (08) (09) (10) (11) (12) 2014 

Launches with traps 697,000 690,000 810,000 
1,099,00
0 

1,009,00
0 892,000 

672,00
0 674,000 791,000 740,000 728,000 800,000 9,602,000 

Launches with kingfish 
net 221,000 212,000 226,000 314,000 249,000 190,000 

126,00
0 224,000 221,000 166,000 189,000 318,000 2,656,000 

Launches with misc. gear 6,000 4,000 9,000 4,000 4,000 5,000 2,000 5,000 8,000 13,000 11,000 6,000 77,000 

Speedboats with misc. 
gear 357,000 283,000 351,000 459,000 296,000 229,000 

170,00
0 214,000 516,000 341,000 267,000 384,000 3,867,000 

Combined 
1,281,00
0 

1,189,00
0 

1,396,00
0 

1,876,00
0 

1,558,00
0 

1,316,00
0 

970,00
0 

1,117,00
0 

1,536,00
0 

1,260,00
0 

1,195,00
0 

1,508,00
0 16,202,000 

                            

Effort in boat-gear days (01) (02) (03) (04) (05) (06) (07) (08) (09) (10) (11) (12) 2014 

Launches with traps 3,168 3,072 3,402 3,005 3,070 3,265 2,897 3,203 3,316 2,961 3,169 3,515 38,043 

Launches with kingfish 
net 1,011 1,273 1,678 1,324 1,260 1,339 1,198 1,454 1,309 1,135 1,051 1,238 15,270 

Launches with misc. gear 159 196 193 108 114 195 108 183 213 384 333 194 2,380 

Speedboats with misc. 
gear 4,775 4,544 6,181 5,941 5,580 4,450 2,584 4,276 5,784 4,112 3,082 4,468 55,777 

Combined … … … … … … … … … … … … … 

                            

CPUE in kg / boat-gear 
day (01) (02) (03) (04) (05) (06) (07) (08) (09) (10) (11) (12) 2014 

Launches with traps 220.0 224.6 238.1 365.7 328.7 273.2 232.0 210.4 238.5 249.9 229.7 227.6 252.4 

Launches with kingfish 
net 218.6 166.5 134.7 237.2 197.6 141.9 105.2 154.1 168.8 146.3 179.8 256.9 173.9 

Launches with misc. gear 37.7 20.4 46.6 37.0 35.1 25.6 18.5 27.3 37.6 33.9 33.0 30.9 32.4 

Speedboats with misc. 
gear 74.8 62.3 56.8 77.3 53.0 51.5 65.8 50.0 89.2 82.9 86.6 85.9 69.3 

Combined … … … … … … … … … … … … … 
  



UAE-NFIS  Training module 2 

 

 

 
Page 32 

 

8.3 Computational steps in effort standardization 

 

The objective of the presented method is to achieve effort compatibility when different boat-gear 

categories are combined together. Specifically, its two tasks are: 

  

Producing total standardized effort of combined boat-gear categories; 

Computing standardized CPUE’s for combined boat-gear categories; 

 

It should be noted here that the example given in this section and summarized in Tables 8.2.1 and 

8.4.1 treats catch as a whole and without focusing on a specific fish stock; such a consideration is 

used only temporarily with the sole purpose of facilitating the presentation of the computational 

steps in effort standardization. In Section 8.5 that describes the results of the method readers will 

be presented with two case studies dealing with Spangled emperor (Lethrinus nebulosus) and 

Narrow-barred Spanish mackerel (Scomberomorus commerson) respectively; these are the two 

top species of the 2014 landings in UAE. 

 

The method starts by considering the compatibility of CPUE’s of different boat-gear categories. 

Since these involve incompatible effort values in the denominator they cannot be combined at 

monthly or annual levels (notice the absent values for effort and CPUE in the totals line in Table 

8.2.1). This happens since they are viewed as weighted averages over a period of a month or a 

year.  

 

On the other hand each of these CPUE’s could be temporarily viewed as the representative catch 

by just one boat from each boat-gear category during one day.  

 

Using this second concept for monthly CPUE’s by boat-gear category and over 12n periods, a 2-

dimensional array of daily yields 
j,iP  can be formed where: 

 

i=1…m  (boat-gear categories); 

j=1…12n (monthly estimates). 

 

To be noted that the notation has changed from CPUE to P since a CPUE is expressed in Kg / boat-

gear day while the newly assumed daily yields P are in Kg. 

 

The method proceeds with the following notations and computations: 

 

The sum of all daily yields is given by: 

 
 


m

1i

n12

1j

j,iPP           (8.3.1) 

The arithmetic mean of all daily yields is given by: 

P
)n12mx(

1
P           (8.3.2) 

 

Working with a boat-gear  i  it is found that its total daily yield is: 
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 



n12

1j

j,ii PP           (8.3.3) 

 

and the arithmetic mean is: 

ii P
n12

1
P            (8.3.4) 

 

The overall arithmetic mean P  shown in (8.3.2) is now assumed to represent the overall daily yield 

of a new (and hypothetical) boat-gear category. To compare the overall performance of each actual 

boat-gear to the new hypothetical one the following ratio is used: 

 

P

P
f i

i             (8.3.5) 

 

where 
iP  and P  are obtained from (8.3.4) and (8.3.2) respectively. 

 

This ratio is referred to as standardization factor since it is used for converting actual effort into a 

standardized one. Once calculated, the 
if  is considered to remain constant across all periods.  

 

Consequently each effort cell j,iE  representing effort of boat-gear  i  in period  j  can be converted 

to standardized effort using the expression: 

 

  j,ii

STD

j,i EfE    i=1…m;   j=1…12n.      (8.3.6) 

 

Adding up all  m  standardized (thus addable) monthly effort values for a period  j  will result in a 

monthly standardized effort STD

jE which combines all boat-gear categories: 





m

1i

STD

j,i

STD

j EE  j=1…12n.       (8.3.7) 

The standardized CPUE’s by boat-gear category are obtained by dividing each catch cell j,iC  by 

the corresponding standardized effort STD

j,iE  obtained from (8.3.6): 

STD

j,i

j,iSTD

j,i
E

C
CPUE   i=1…m;   j=1…12n.      (8.3.8) 

Lastly the combined standardized catch-per-unit-effort effort in a period  j  is calculated. Here the 

combined monthly catch of all boat-gear categories is divided by the combined monthly 

standardized effort obtained from (8.3.7).  

Combined standardized Catch-Per-Unit-Effort: 
STD

j

m

1i

j,i
STD

j
E

C

CPUE

     j=1…12n. (8.3.9) 

At this stage tasks (a) and (b) that were set-up at the beginning of this section have been achieved. 
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Two points arise now regarding: (a) consistency of standardized data and (b) their numerical 

treatment across different periods. 

 

It is evident that the standardization factors formulated by the presented approach depend directly 

on the selection of a hypothetical boat-gear category to be used as standard. According to Robson 

(1966) the role of such a standard can also be played by any of the actual boat-gear categories; 

such a flexibility of choice would result in a different but equally valid set of standardization 

factors. Given that in studying the fluctuation and trend of standardized variables users require 

consistent sets of data, it becomes apparent that the standardization effort and CPUE values so far 

obtained need additional treatment in order to become independent of the initial selection of a boat-

gear as standard.  

 

One way of achieving this is to adopt the normalization approach used by the ICES North Sea 

Round Fish Working Group (1980). The approach consists of (i) calculating the arithmetic mean 

of a standardized variable across periods and, (ii) substituting each standardized value by its 

proportion to the mean. In such a manner the resulting normalized values are dimensionless and 

share a similar value scale.  

 

It remains to be seen if such normalized values are independent of the choice of a boat-gear 

category as standard. This is rather easy to prove without performing tedious computations. Suffice 

to notice that all expressions involving standardized effort contain two factors: one which is the 

quotient 1/ P  and another that is independent of P  and depends only on the original data. Consider 

for instance expression (8.3.7) which computes the combined standardized effort for a given period 

j. By recalling that each j,ii

STD

j,i EfE   and that  
P

P
f i

i  ,  this expression can also be written as: 





m

1i

j,ii

m

1i

j,ii

m

1i

STD

j,i

STD

j EP
P

1
EfEE      (8.3.10) 

When the combined monthly standardized effort is summed across periods, its arithmetic mean 

will also contain 
P

1
. During normalization each standardized effort from (8.3.10) will be divided 

by the arithmetic mean thus canceling out  
P

1
 and making the obtained normalized effort 

independent of the initial choice of a boat-gear category as standard.  

 

Working in a similar manner with the standardized CPUE’s we find that their sums and arithmetic 

means contain an expression of P  and other expressions that are independent of it. During the 

normalization process the expressions of P  cancel out thus proving that the normalized CPUE’s 

are independent of the initial choice of a boat-gear category as standard. 

 

8.4  A numerical example 

 

Table 8.4.1 shows the results of the standardization approach after it has applied to the UAE-NFIS 

catch/effort data of Table 8.2.1.  
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Here the standardization involves m=4 boat-gear categories and 12 catch/effort monthly estimates 

resulting a total of 48 CPUE’s. It is recalled that during the standardization phase the notation of 

these CPUE’s will temporarily be changed to P since they will be viewed as representing daily 

catches. Accordingly their units will be in Kg. 

 

Calculation of standardization factors 

 

First the sum of all 48 daily yields (12 yields for each of the 4 boat-gear categories) is calculated. 




 


4m

1i

12

1j

j,iPP = 6,366 Kg. 

The corresponding arithmetic mean P  in (2) will be equal to 6,366/48 = 132.6 Kg. 

 

Next step is the calculation of average daily yields for each boat-gear category using expressions 

(3) and (4). 

 

Launches with traps:    1P 3,038.5 Kg and 1P 253.2 Kg. 

Launches with kingfish net:   2P 2,107.5 Kg and 2P 175.6 Kg. 

Launches with misc. gear:  3P 383.8 Kg and 3P 32.0 Kg. 

Speedboats with misc. gear:  4P 836.2 Kg and 4P 69.7 Kg. 

 

Calculation of standardization factors (STD) makes use of expression (8.3.5). Each of the above 

averages is divided by 6.132P   calculated earlier: 

 

STD factor for launches with traps = 253.2/132.6 = 1.909. 

STD factor for launches with kingfish net= 175.6/132.6 = 1.324. 

STD factor for launches with misc. gear = 32.0/132.6 = 0.241. 

STD factor for speedboats with misc. gear = 69.7/132.6 = 0.525. 

 

These results are shown in the first block of Table 8.4.1. To be noted that once these factors have 

been calculated they apply to all 12 monthly columns of 2014.  

 

Calculation of standardized effort 

 

The second block of Table 8.4.1 illustrates standardized effort for each of the four boat-gear 

categories. All standardized effort figures by boat-gear category are resulting from the application 

of expression (8.3.6) to all effort cells in Table 8.2.1. For instance in January 2014 the actual effort 

of launches with traps is 3,168 boat-gear days. The standardization factor for this boat-gear 

category is 1.909. By multiplying the 3,168 actual boat-gear days by this factor we obtain a 

standardized effort of 6,048 boat-gear days (first cell of the second block in Table 8.4.1). 

 

To be noted that since all standardized effort values are addable it is now possible to combine them 

vertically across boat-gear categories and then horizontally across months, thus obtaining a total 

effort figure for 2014 equal to 122,733 standardized boat-gear days. 
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Next line shows combined standardized effort in normalized form. The arithmetic mean of the 12 

effort figures is 10,228 boat-gear days. The normalized value of the first entry is 9,934 / 10,228 = 

0.971.The rest of the normalized effort values are calculated likewise.   

 

Calculation of standardized CPUE’s 

 

The third block of Table 8.4.1 illustrates standardized CPUE’s for each of the four boat-gear 

categories. All figures are resulting from the application of expression (8.3.8) to each CPUE cell 

in Table 1. For instance in January 2014 the standardized CPUE for launches with traps will be 

697,000 Kg of catch (first cell in Table 8.2.1) divided by the corresponding standardized effort of 

6,048 boat-gear days, which gives 115.2 Kg / boat-gear day.  

 

A combined standardized CPUE is also computed using expression (8.3.9). Here the total catch 

for January 2014 is 1,281,000 Kg and the combined standardized effort is 9,934 boat-gear days, 

thus resulting a combined standardized CPUE of 128.9 Kg / boat-gear day. 

 

Next line shows combined standardized CPUE in normalized form. The arithmetic mean of the 12 

combined CPUE’s figures is 131.7. The normalized value of the first entry is 128.9 / 131.7 = 0.979. 

The rest of the normalized effort values are calculated likewise.   

 

To be noted that the notation for catch-per-unit-effort has returned back to CPUE since this variable 

is again calculated as a weighted average of catch divided by effort. 

 

Figure 8.4.1 illustrates a plot of the normalized effort and CPUE contained in Table 8.4.1.  
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Table 8.4.1  Standardization of the UAE-NFIS catch/effort of Table 8.2.1 

Standardization factors (01) (02) (03) (04) (05) (06) (07) (08) (09) (10) (11) (12) 2014 

Launches with traps 1.909 1.909 1.909 1.909 1.909 1.909 1.909 1.909 1.909 1.909 1.909 1.909 1.909 

Launches with kingfish net 1.324 1.324 1.324 1.324 1.324 1.324 1.324 1.324 1.324 1.324 1.324 1.324 1.324 

Launches with misc. gear 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 0.241 

Speedboats with misc. 
gear 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 0.525 

              
Standardized effort (01) (02) (03) (04) (05) (06) (07) (08) (09) (10) (11) (12) 2014 

Launches with traps 6,048 5,865 6,495 5,737 5,861 6,234 5,531 6,115 6,331 5,653 6,050 6,711 72,633 

Launches with kingfish net 1,339 1,686 2,222 1,753 1,669 1,773 1,586 1,925 1,733 1,503 1,392 1,639 20,221 

Launches with misc. gear 38 47 47 26 27 47 26 44 51 93 80 47 574 

Speedboats with misc. 
gear 2,509 2,387 3,247 3,121 2,932 2,338 1,358 2,247 3,039 2,160 1,619 2,347 29,305 

Combined 9,934 9,986 12,011 10,638 10,489 10,392 8,501 10,331 11,155 9,409 9,142 10,745 122,733 

Normalized 0.971 0.976 1.174 1.040 1.026 1.016 0.831 1.010 1.091 0.920 0.894 1.051  

              
Standardized CPUE’s (01) (02) (03) (04) (05) (06) (07) (08) (09) (10) (11) (12) 2014 

Launches with traps 115.2 117.6 124.7 191.6 172.1 143.1 121.5 110.2 124.9 130.9 120.3 119.2 132.2 

Launches with kingfish net 165.1 125.8 101.7 179.1 149.2 107.2 79.4 116.3 127.5 110.4 135.8 194.0 131.3 

Launches with misc. gear 156.5 84.6 193.4 153.6 145.5 106.3 76.8 113.3 155.8 140.4 137.0 128.3 134.2 

Speedboats with misc. 
gear 142.3 118.5 108.1 147.1 101.0 97.9 125.2 95.3 169.8 157.8 164.9 163.6 132.0 

Combined 128.9 119.1 116.2 176.4 148.5 126.6 114.1 108.1 137.7 133.9 130.7 140.3 132.0 

Normalized   0.979 0.904 0.882 1.339 1.128 0.961 0.866 0.821 1.045 1.017 0.992 1.065 

 

 

 

 

 
Figure 8.4.1 Plot of normalized effort and CPUE based on the 2014 UAE-NFIS catch/effort data 
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8.5 Results of the method 

 

Application of effort standardization to the fishery of Spangled emperor (Lethrinus nebulosus) 

 

As already mentioned in Introduction Spangled emperor (Lethrinus nebulosus) was the top 

species in 2014 with landings representing 16.2% of the total.  

 

 
Figure 8.5.1 Spangled emperor (Lethrinus nebulosus) 

 

This species is targeted by launches with traps and speedboats (tarads). Catches by the other two 

boat-gear categories are negligible and regarded as accidental. Consequently effort standardization 

focuses on the above two boat-gear categories. Launches with traps is the predominant boat-gear 

accounting for 76% of the species catches in 2013 and 71% in 2014.  

 

Table 8.5.1 illustrates catch/effort data for 2013 and 2014. Since the effort exerted by the two boat-

gear categories is not compatible no combined data are shown for effort and CPUE’s in the last 

two columns. 

 

Table 8.5.2 shows the results of the standardization process, including normalized values for effort 

and CPUE. 

 

Figure 8.5.2 illustrates monthly plots of normalized effort and CPUE. There is a slight (but visible) 

rising trend for fishing effort and a declining one for the CPUE. 
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Table 8.5.1 Catch/effort data for Sh'ari شعري Lethrinus nebulosus (Spangled emperor) (2013 – 2014) 

Accuracy of estimates: 90.6% 

 Launches with traps Speedboats Combined 

Period Catch Effort CPUE Catch Effort CPUE Catch Effort CPUE 

1 111,130 4,561 24.37 61,683 2,594 23.78 172,813 … … 

2 98,669 3,911 25.23 69,040 2,485 27.79 167,709 … … 

3 118,539 2,625 45.17 68,689 2,313 29.70 187,228 … … 

4 382,464 3,475 110.06 57,079 3,120 18.29 439,543 … … 

5 272,046 2,790 97.50 62,590 4,086 15.32 334,636 … … 

6 190,795 2,524 75.60 39,851 1,705 23.38 230,646 … … 

7 150,694 2,812 53.59 24,752 1,143 21.65 175,446 … … 

8 129,136 3,010 42.90 12,556 816 15.39 141,692 … … 

9 89,015 2,812 31.66 33,806 2,771 12.20 122,821 … … 

10 115,355 3,267 35.31 53,946 2,769 19.48 169,301 … … 

11 119,403 3,228 36.99 47,075 6,417 7.34 166,478 … … 

12 128,556 2,907 44.22 59,225 3,733 15.87 187,781 … … 

2013 1,905,802 37,922 50.26 590,294 33,952 17.39 2,496,096 … … 

1 133,786 3,168 42.23 104,538 2,911 35.92 238,324 … … 

2 148,305 3,072 48.27 82,761 2,842 29.12 231,066 … … 

3 193,881 3,402 56.99 47,560 5,484 8.67 241,441 … … 

4 298,826 3,005 99.44 111,581 5,941 18.78 410,407 … … 

5 239,525 3,070 78.02 81,146 5,580 14.54 320,671 … … 

6 159,508 3,265 48.86 48,273 4,371 11.04 207,781 … … 

7 89,878 2,897 31.02 31,842 2,584 12.32 121,720 … … 

8 111,765 3,203 34.90 39,273 1,869 21.01 151,038 … … 

9 107,153 3,316 32.31 32,439 3,009 10.78 139,592 … … 

10 106,558 2,961 35.98 40,819 4,112 9.93 147,377 … … 

11 124,312 3,169 39.23 32,808 2,064 15.89 157,120 … … 

12 130,134 3,515 37.03 88,952 4,468 19.91 219,086 … … 

2014 1,843,630 38,044 48.46 741,993 45,236 16.40 2,585,623 … … 
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Table 8.5.2 Standardized effort and CPUE for Sh'ari شعري Lethrinus nebulosus (Spangled emperor) (2013 – 

2014) 

 Launches with traps Speedboats Combined 

Period STD  STD STD STD  STD STD STD Norma- STD Norma- 

  factor effort CPUE factor effort CPUE effort lized CPUE lized 

1 1.467 6,691 16.61 0.533 1,383 44.61 8,073 1.261 21.41 0.644 

2 1.467 5,737 17.19 0.533 1,324 52.13 7,061 1.103 23.75 0.714 

3 1.467 3,850 30.78 0.533 1,233 55.72 5,083 0.794 36.83 1.107 

4 1.467 5,098 75.01 0.533 1,663 34.32 6,761 1.056 65.01 1.955 

5 1.467 4,093 66.45 0.533 2,178 28.74 6,271 0.980 53.36 1.604 

6 1.467 3,703 51.52 0.533 909 43.86 4,611 0.720 50.02 1.504 

7 1.467 4,125 36.52 0.533 609 40.62 4,734 0.739 37.06 1.114 

8 1.467 4,416 29.23 0.533 435 28.87 4,851 0.758 29.21 0.878 

9 1.467 4,125 21.57 0.533 1,477 22.89 5,602 0.875 21.92 0.659 

10 1.467 4,793 24.06 0.533 1,476 36.55 6,269 0.979 27.01 0.812 

11 1.467 4,735 25.21 0.533 3,420 13.76 8,156 1.274 20.41 0.614 

12 1.467 4,265 30.13 0.533 1,990 29.77 6,255 0.977 30.02 0.903 

2013 1.467 55,631 34.25 0.533 18,097 32.62 73,728   33.86   

1 1.467 4,648 28.78 0.533 1,551 67.38 6,199 0.968 38.44 1.156 

2 1.467 4,507 32.90 0.533 1,515 54.64 6,022 0.941 38.37 1.154 

3 1.467 4,991 38.84 0.533 2,923 16.27 7,914 1.236 30.51 0.917 

4 1.467 4,408 67.77 0.533 3,167 35.24 7,575 1.183 54.18 1.629 

5 1.467 4,504 53.17 0.533 2,974 27.28 7,478 1.168 42.88 1.289 

6 1.467 4,789 33.30 0.533 2,330 20.72 7,119 1.112 29.19 0.878 

7 1.467 4,250 21.14 0.533 1,377 23.12 5,627 0.879 21.63 0.650 

8 1.467 4,699 23.78 0.533 996 39.42 5,695 0.890 26.52 0.797 

9 1.467 4,865 22.02 0.533 1,604 20.23 6,469 1.010 21.58 0.649 

10 1.467 4,344 24.52 0.533 2,192 18.62 6,536 1.021 22.55 0.678 

11 1.467 4,649 26.73 0.533 1,100 29.82 5,749 0.898 27.33 0.822 

12 1.467 5,156 25.23 0.533 2,382 37.35 7,538 1.177 29.06 0.874 

2014 1.467 55,811 33.03 0.533 24,111 30.77 79,922   32.35   
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Figure 8.5.2 Monthly plots of normalized effort and CPUE for Sh'ari شعري Lethrinus nebulosus (Spangled 

emperor) (2013 – 2014). There is a slight (but visible) rising trend for fishing effort and a declining one for the 

CPUE. 
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Application of effort standardization to the fishery of Narrow-barred Spanish mackerel 

(Scomberomorus commerson) 

 

 
Figure 8.5.3 Narrow-barred Spanish mackerel (Scomberomorus commerson) 

 

This important species (second in the 2014 ranked landings and representing 10.5% of the total) is 

targeted by launches with kingfish net and speedboats (tarads). Catches by launches with 

miscellaneous gear are negligible and are not included in the case study. Launches with kingfish 

net is by far the predominant boat-gear accounting for 90% of the species catches in 2013 and 95% 

in 2014.  

 

Table 8.5.3 illustrates catch/effort data for 2013 and 2014. Since the effort exerted by the two boat-

gear categories is not compatible no combined data are shown for effort and CPUE’s in the last 

two columns. 

 

Table 8.5.4 shows the results of the standardization process, including normalized values for effort 

and CPUE. 

 

Figure 8.5.4 illustrates monthly plots of normalized effort and CPUE. There is a slight (but visible) 

declining trend for both fishing effort and the CPUE. 

  



UAE-NFIS  Training module 2 

 

 

 
Page 43 

Table 8.5.3 Catch/effort data for Narrow-barred Spanish mackerel (Scomberomorus commerson) 

(2013 – 2014). Accuracy of estimates: 88.3% 

 Launches with kingfish net Speedboats Combined 

Period Catch Effort CPUE Catch Effort CPUE Catch Effort CPUE 

1 258,119 1,874 137.77 10,157 508 20.00 268,276 … … 

2 133,628 2,213 60.39 0 0 0.00 133,628 … … 

3 199,616 2,138 93.36 10,770 950 11.34 210,386 … … 

4 118,478 1,261 93.93 90,642 1,784 50.81 209,120 … … 

5 130,612 1,285 101.68 48,423 823 58.81 179,035 … … 

6 94,031 948 99.24 8,809 896 9.83 102,840 … … 

7 127,899 1,532 83.49 1,903 257 7.40 129,802 … … 

8 175,797 1,644 106.93 0 0 0.00 175,797 … … 

9 188,768 1,972 95.73 2,536 1,700 1.49 191,304 … … 

10 287,010 2,015 142.40 324 1,573 0.21 287,334 … … 

11 114,090 1,565 72.92 30,691 6,579 4.67 144,781 … … 

12 112,053 1,237 90.56 22,743 2,368 9.61 134,796 … … 

2013 1,940,103 19,683 98.57 226,998 17,438 13.02 2,167,101 … … 

1 97,925 1,011 96.85 8,168 2,911 2.81 106,093 … … 

2 117,490 1,273 92.30 0 0 0.00 117,490 … … 

3 125,140 1,678 74.56 6,281 2,250 2.79 131,421 … … 

4 255,711 1,324 193.14 11,835 5,032 2.35 267,546 … … 

5 147,988 1,260 117.44 5,351 4,786 1.12 153,339 … … 

6 102,938 1,339 76.90 1,044 1,299 0.80 103,982 … … 

7 64,857 1,198 54.16 699 68 10.25 65,556 … … 

8 112,760 1,454 77.54 1,277 1,240 1.03 114,037 … … 

9 131,961 1,309 100.82 9,974 2,285 4.37 141,935 … … 

10 113,214 1,135 99.75 20,350 2,379 8.55 133,564 … … 

11 144,751 1,051 137.69 10,800 2,064 5.23 155,551 … … 

12 200,665 1,238 162.07 193 2,010 0.10 200,858 … … 

2014 1,615,400 15,270 105.79 75,972 26,324 2.89 1,691,372 … … 
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Table 8.5.4 Standardized effort and CPUE for Narrow-barred Spanish mackerel (Scomberomorus 

commerson) (2013 – 2014) 

 

Launches with kingfish 
net Speedboats Combined 

Period STD  STD STD STD  STD STD STD Norma- STD Norma- 

  factor effort CPUE factor effort CPUE effort lized CPUE lized 

1 1.840 3,448 74.86 0.160 81 125.27 3,529 1.188 76.02 1.398 

2 1.840 4,072 32.81 0.160 0 0.00 4,072 1.370 32.81 0.603 

3 1.840 3,935 50.73 0.160 152 70.99 4,087 1.375 51.48 0.947 

4 1.840 2,321 51.04 0.160 285 318.27 2,606 0.877 80.24 1.476 

5 1.840 2,364 55.25 0.160 131 368.37 2,495 0.840 71.74 1.319 

6 1.840 1,744 53.93 0.160 143 61.55 1,887 0.635 54.50 1.002 

7 1.840 2,819 45.37 0.160 41 46.35 2,860 0.963 45.38 0.835 

8 1.840 3,026 58.10 0.160 0 0.00 3,026 1.018 58.10 1.068 

9 1.840 3,629 52.02 0.160 271 9.34 3,900 1.313 49.05 0.902 

10 1.840 3,709 77.38 0.160 251 1.29 3,960 1.333 72.55 1.334 

11 1.840 2,879 39.62 0.160 1,050 29.22 3,930 1.323 36.84 0.677 

12 1.840 2,277 49.21 0.160 378 60.17 2,655 0.894 50.77 0.934 

2013 1.840 36,224 53.56 0.160 2,784 81.53 39,008   55.56   

1 1.840 1,861 52.62 0.160 465 17.57 2,326 0.783 45.62 0.839 

2 1.840 2,343 50.15 0.160 0 0.00 2,343 0.788 50.15 0.922 

3 1.840 3,089 40.51 0.160 359 17.49 3,448 1.160 38.12 0.701 

4 1.840 2,437 104.95 0.160 803 14.73 3,240 1.090 82.58 1.518 

5 1.840 2,319 63.81 0.160 764 7.00 3,083 1.038 49.73 0.915 

6 1.840 2,464 41.78 0.160 207 5.04 2,671 0.899 38.93 0.716 

7 1.840 2,204 29.43 0.160 11 64.20 2,215 0.745 29.60 0.544 

8 1.840 2,676 42.13 0.160 198 6.45 2,874 0.967 39.67 0.730 

9 1.840 2,409 54.78 0.160 365 27.34 2,774 0.933 51.17 0.941 

10 1.840 2,089 54.20 0.160 380 53.57 2,469 0.831 54.10 0.995 

11 1.840 1,935 74.82 0.160 330 32.77 2,264 0.762 68.70 1.263 

12 1.840 2,279 88.07 0.160 321 0.60 2,600 0.875 77.27 1.421 

2014 1.840 28,103 57.48 0.160 4,203 18.08 32,306   52.36   

 

  



UAE-NFIS  Training module 2 

 

 

 
Page 45 

 

 
Figure 8.5.4 Monthly plots of normalized effort and CPUE for Narrow-barred Spanish mackerel 

(Scomberomorus commerson) (2013 – 2014). There is a slight (but visible) declining trend for both fishing 

effort and the CPUE. 

 

8.6 Observations 

 

8.6.1 Comparison to other methods 

 

As mentioned in the Introduction UAE-NFIS has recently adopted the presented approach that 

combines elements of the normalized relative effort (used by the North Sea Round Fish Working 

Group,  ICES, 1980) and the relative fishing power developed by Robson (1966). It was also 

mentioned that although the existing literature offers a plethora of other more recent and more 

sophisticated methods it was nevertheless considered preferable to first try out approaches that (a) 

depend only on catch/effort data from commercial fisheries and, (b) are applicable to situations of 

limited time coverage.  

 

The Robson basic concept of relative fishing power was adopted in formulating effort 

standardization factors. The presented method uses a variation to the Robson concept; instead of 

arbitrarily selecting an existing CPUE to use as standard it uses for this purpose a mean daily yield 

of one fishing unit of a hypothetical boat-gear category. This variation does not constitute a real 

difference since Robson states that in choosing a CPUE standard “any boat-gear is as good as 

another”.  It is the authors’ view, however, that involving all boat-gear categories in the source 

data makes the selection of the CPUE standard less arbitrary.   
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On the other hand the fact remains that users should be free to use any standard that would be 

appropriate or convenient for their work. This means that several standardized datasets, all equally 

valid but different from each other, might be resulting from the same source data.  

 

To overcome this problem the presented method further processes the standardized data with the 

objective of making them consistent irrespective of the initial choice of a CPUE as standard. It was 

shown that such an objective can be achieved by means of a normalization process such as the one 

adopted by the North Sea Round Fish Working Group,  ICES (1980). In this commonly used 

statistical technique each standardized value (whether referring to effort or to CPUE) is replaced 

by its proportion to the arithmetic mean of all values. In such a manner the resulting normalized 

values are dimensionless and share a similar value scale. Moreover the authors explicitly 

demonstrated that normalized values obtained in this manner are independent of the choice of the 

boat-gear standard initially selected.  

 

Lastly the presented method follows the same concept of dynamic standardization shown in both 

ICES and Robson approaches. Monthly and annual standardization factors (and hence normalized 

effort and CPUE’s) vary when the source data cover different numbers of years. For instance, 

launches with kingfish net have a standardization factor of 1.840 over the period January 2013 – 

December 2014. This value will be different when the source data will extend to December 2015, 

December 2016, etc. Such a consideration is essential in order for the standardized variables to be 

compatible across all periods, a criterion that would not be met if standardization was to apply for 

each year separately.     

 

8.6.2 Equivalent approaches for the formulation of standardization factors 

 

Expression (8.3.5) specifies that the standardization factor for a specific boat-gear category is 

directly defined as the ratio of its overall CPUE (viewed temporarily as the average daily yield iP  

of a single fishing unit over all periods) to the average daily yield  P  of a hypothetical boat-gear. 

It is recalled that iP  is obtained from expression (8.3.4) and P  from expressions (8.3.1) and 

(8.3.2). 

 

Viewing CPUE’s as overall daily yields of single fishing units was considered both convenient 

and practical in the present study. The chosen approach however does not preclude the adoption 

of other hypotheses which can produce the same results by means of different interpretations of 

the CPUE’s. For instance an alternative approach is to formulate standardization factors on the 

basis of days needed catching the same arbitrary quantity Q. Under such a scheme the days needed 

for each boat-gear to catch Q will be Q/ iP . Next a hypothetical boat-gear category with catch-per-

unit-effort equal to P  is considered. Here the number of days needed to catch Q is equal to Q/ P . 

Since the number of days needed is in reverse proportion to the relative importance of a boat-gear 

(i.e. higher performance implies fewer days to catch a given quantity Q) we divide the second ratio 

by the first, thus obtaining the same standardization factor 
P

P
f i

i  . 

8.6.3 The problem of data gaps 
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Maunder (2004) has stressed the importance of paying due attention to situations in which there 

are data gaps in the datasets. The remedies are not always simple and in some cases they become 

quite elaborate.  

 

Data gaps are more frequent in monthly data. For instance a species may disappear temporarily 

from the landings as a result of the seasonality of the fishery. Or a new and important boat-gear 

category may enter the fishery at a certain point thus creating gaps in the effort and catch of the 

earlier periods. Likewise a boat-gear might disappear at a certain point thus creating gaps in the 

effort and catch of the periods that come after. 

 

It is the authors’ view that the problem of data gaps does not affect the presented method since the 

standardization factors are calculated on the basis of cumulative daily yields covering the entire 

reference period. It was shown that the standardization process applies to a matrix of source data 

in which cells may as well contain zeroes (for instance the speedboats in February and August 

2013 and in February 2014).  In mathematical terms the only condition for a boat-gear category to 

participate in the process is to have at least one non-zero entry in the matrix. In practice, however, 

boat-gear categories showing small and scattered quantities of accidental catch are not included in 

the process as was for instance the case or launches with miscellaneous gear catching kingfish.  

 

8.6.4 Reliability of catch/effort data 

 

Another point worth addressing is the reliability of catch/effort estimates that constitute the data 

source for the standardization process. 

 

In UAE-NFIS catch/effort estimates go through a gauntlet of several quality checks before they 

are reported. Data reliability is rigorously monitored by means of sampling schedules at the 

beginning of each operational month and work progress reports that are being consulted by the 

system administrator at any instance. Sampling schedules indicate the number of sampling days to 

be used and the number of samples to be collected on each sampling day; all such norms apply to 

all ports and all boat-gear categories. Samples of landings and boat-gear activity are collected in a 

parallel manner, using different sampling norms and independently of each other. The aim of such 

planning is to achieve an overall accuracy of catch/effort estimates that stays above 90%; this has 

been consistently achieved from 2014 onwards. This threshold of 90% is rather empirical but it is 

generally accepted as satisfactory in large-scale statistical monitoring systems. In more exact terms 

the real accuracy achieved is not known; the approaches used by UAE-NFIS make use of the 

“pessimistic” accuracy concept in which the resulting accuracy stays above a pre-set  lower limit 

(Stamatopoulos, 2003). It is also a composite index incorporating a spatial accuracy (a function of 

sample size) and a temporal accuracy (that depends on sampling frequency). In addition to the 

above two relative indices of accuracy the Sampling Uniformity Index (SUI) monitors the 

uniformity of samples over the sampling days and it penalizes the temporal accuracy in cases of 

uneven concentrations of samples favouring certain sampling days.  
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Chapter 9: Multi-variate ranking of catch/effort variables 

 
9.1 Introduction 

 

Ranking the values of a single variable is a commonly used technique in the analysis of catch/effort 

estimates. In such a ranking the most or least important element appears on top, followed by all 

other elements in descending or ascending order of importance. In the case of descending order 

(i.e. from maximum to minimum values) ranking is usually accompanied by two types of 

percentages: the first indicating the proportion of a ranked value to the total and the second the 

cumulative proportion to that point. This type of percentage permits a quick understanding of the 

most important elements which, when combined, account for a given proportion to the grand total. 

 

Table 9.1.1 provides an example of such a ranking. It refers to catch by species in 2014 and displays 

the top 12 species the combined catch of which accounts for about 75% of the 2014 production. 

The first column indicates the species, the second the catch in 1000 Kg, the third indicates the 

percentage to the total and the fourth the cumulative percentage. 

 
Table 9.1.1 Ranking and cumulative percentages for species catch (in ‘000 Kg) for 2014 

2014 annual totals : Ranking and cumulative percentages  

Sh'ari شعريLethrinus nebulosus (Spangled emperor) 2,625.3 16.2 % 16.2 % 

Kanaad كنعد Scomberomorus commerson (Spanish mackerel) 1,702.7 10.5 % 26.7 % 

Saafi صافي Siganus canaliculatus (Whit-spott spinefoot) 1,344.5 8.3 % 35.0 % 

OTHER أنواع أخرى(Miscellaneous) 1,117.9 6.9 % 41.9 % 

Boukshina بوقشينة Lethrinus lentjan (Pink ear emperor) 1,064.1 6.6 % 48.4 % 

Hamour هامور Epinephelus coioides (Orange-spotted grouper) 968.0 6.0 % 54.4 % 

Qurqufan قرقفان Rhabdosargus haffara (Haffara seabream) 702.4 4.3 % 58.7 % 

Koffar كوفر Argyrops spinifer (King soldier bream) 592.8 3.7 % 62.4 % 

Farsh فرش Diagramma pictum (Painted sweetlips) 574.4 3.5 % 65.9 % 

Rebeeb ربيب Gnathanodon speciosus (Gold toothless treval) 557.2 3.4 % 69.4 % 

Jash جش Carangoides bajad (Orangespotted trevally) 510.7 3.1 % 72.5 % 

Tabaan تبان Euthynnus affinis (Kawakawa) 355.6 2.2 % 74.7 % 

 

  

Table 9.1.2 provides a second example showing the top 8 species accounting for about 75% of 

the total value of the 2014 production.  

 
Table 9.1.2 Top 8 species accounting for about 75% of the total value (in ‘000 QR)  

of the 2014 production  
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2014 annual totals : Ranking and cumulative percentages  

Kanaad كنعد  Scomberomorus commerson (Spanish mackerel) 44,765 18.2 % 18.2 % 

Hamour هامور  Epinephelus coioides (Orange-spotted grouper) 41,323 16.8 % 35.0 % 

Saafi صافي  Siganus canaliculatus (Whit-spott spinefoot) 31,158 12.7 % 47.7 % 

Sh'ari شعري Lethrinus nebulosus (Spangled emperor) 23,955 9.7 % 57.4 % 

OTHER أنواع أخرى (Miscellaneous) 15,342 6.2 % 63.7 % 

Rebeeb ربيب  Gnathanodon speciosus (Gold toothless treval) 11,111 4.5 % 68.2 % 

Boukshina بوقشينة  Lethrinus lentjan (Pink ear emperor) 7,805 3.2 % 71.4 % 

Jash جش  Carangoides bajad (Orangespotted trevally) 7,118 2.9 % 74.3 % 

 

In the first ranking of species catches the top species is Sh’ari (Lethrinus nebulosus). In the second 

example the top species in terms of value is Kanaad (Scomberomorus commerson).  
 
9.2 Cases requiring multi-variate ranking  

 

By examining the two ranking examples provided in the previous section the question arises as to 

which species is the most important according to a combined criterion involving both catch and 

value. In general there can exist several criteria, equally important, for ranking elements (the shown 

cases referred to species but the method to be presented can deal with any type of element, such as 

boat-gear types, strata, etc.). 

 

If an element appears on the top in all single ranking lists then there is no doubt that it is the most 

important. But generally elements are placed differently in these lists and it is often difficult to 

measure their overall importance by visual examination. It is in this respect that a multi-variate 

ranking comes in as a simple and useful tool. 

 

9.3 Normalization of quantitative criteria  

 

Let us assume a list of m elements denoted by: ie , i=1…m. 

We also assume that each element ie  is associated to an array of n values 
ijv , j=1…n, which 

constitute numerical criteria of importance amongst the elements. 

Since the columns (i.e. criteria values) of the matrix 
ijv  have different value ranges, the first step 

is to normalize these columns by mapping them to a common numerical scale. Generally a 

convenient scale is that of 0-1. Such a mapping is achieved by the following computations: 

 

Determining the minimum and maximum values 
jmin  and 

jmax  for each column j. 

All values 
ijv  will be mapped to normalized values 

iju  using the formula: 

            
jj

jij

ij
minmax

minv
u




         (9.3.1) 

Expression 9.3.1 indicates that each column will have values between 0 and 1 inclusive. 

 

9.4 Distances from “ideal point” 
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Next we define the “ideal point” as the n-dimensional point with coordinates (
ib ,

2b ,…,
nb ). In 

other words for each of the n criteria we select the “best” value to be represented in the ideal point. 

A 
jb  will be 1 if the criterion favours high values or 0 if otherwise.  

Next each element 
ie  will be assigned a distance 

id  from the ideal point computed as: 

 





n

1j

2

jiji )bu(d         (9.4.1) 

 

During this process we also compute the maximum distance found D. 

 

9.5 The rank indicator R 

 

For each element 
ie  the following ranking indicator is computed: 

D

d
x100R i

i           (9.5.1) 

This indicator expresses in percentage form the relative importance of an element using the 

combined numerical criteria described by the matrix 
ijv  described in Section 9.3. 

 

9.6 Numerical example 

 

The UAE-NFIS utility used for multi-variate ranking made use of two tables relating to species 

catches and species values respectively. Fifty five species participated in the process. The general 

procedure described in the previous sections furnished the results shown in Table 9.6.1. 

Scomberomorus commerson (Spanish mackerel) came up as the most important species in 

considering both catch and value. It is recalled that in terms of catch this species was second in the 

ranking list. Lethrinus nebulosus (Spangled emperor) which was top species in the catch list 

appears second in the combined ranking. 

 
Table 9.6.1 Application of multi-variate ranking to species catch and values 

Rank Ranked elements Relative importance (in %) 

1 Kanaad  كنعد Scomberomorus commerson (Spanish mackerel) 75.15 

2 Sh'ari شعري Lethrinus nebulosus (Spangled emperor) 67.12 

3 Saafi  صافي Siganus canaliculatus (Whit-spott spinefoot) 59.35 

4 Hamour  هامور Epinephelus coioides (Orange-spotted grouper) 55.03 

5 Boukshina  بوقشينة Lethrinus lentjan (Pink ear emperor) 28.04 

6 Rebeeb  ربيب Gnathanodon speciosus (Gold toothless treval) 22.99 

7 Qurqufan  قرقفان Rhabdosargus haffara (Haffara seabream) 18.63 

8 Jash  جش Carangoides bajad (Orangespotted trevally) 17.65 

9 Koffar  كوفر Argyrops spinifer (King soldier bream) 17.64 

10 Farsh  فرش Diagramma pictum (Painted sweetlips) 14.29 

11 Bedha  بدحة Gerres longirostris (silver-biddy) 12.33 

12 Karari  كراري Atule mate (Yellowtail scad) 9.87 

13 Kobkob  قبقب Portunus pelagicus (Blue swimmimg crab) 9.42 
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14 Tabaan  تبان Euthynnus affinis (Kawakawa) 8.88 

15 Jid  جد Sphyraena flavicauda (Yellowtail barracuda) 8.61 

16 Semaan  سمان Epinephelus bleekeri (Duskytail grouper) 8.59 

17 Zubaidi  زبيدي Carangoides malabaricus (Malabar trevally) 7.63 

18 Saal  صال Carangoides chrysophrys (Longnose trevally) 7.11 

19 Dal'ah ضلعه Scomberoides commersonnianus (Queenfish) 6.05 

20 Sooli  سولي Lethrinus microdon (Smalltooth emperor) 5.94 

21 Yanam  ينم Plectorhinchus sordidus (Sordid rubberlip) 5.18 

22 Naiser  نيسر Lutjanus fulviflamma (Dory snapper) 4.82 

23 Fasker  فسكر Acanthopagrus bifasciatus (Twobar seabream) 4.68 

24 Shiem  شم Arius thalassinus (Giant sea catfish) 4.57 

25 Hamra حمره Lutjanus malabaricus (Malabar blood snapper) 4.43 

26 Khathaag  خثاق Sepia pharaonis (Cuttle fish) 3.53 

27 Gargor  جرجور Carcharhinus dussumieri (White cheek shark) 2.97 

28 Hamaam  حمام Carangoides gymnostethus (Bludger) 2.81 

29 Sultan Ibrahim  سلطان إبراهيم Parupeneus marga (Pearly goatfish) 2.64 

30 Laden  لدن Epinephelus polylepis (Smallscaled grouper) 2.46 

31 N'aimia نعيمية Pinjalo pinjalo (Pinjalo) 2.18 

32 Helali  هلالي Plectorhinchus gaterinus (Blackspotted rubbe) 1.81 

33 Gane  قين Scarus ghobban (Blue-barred parrotfish) 1.78 

34 Siken  سكن Rachycentron canadum (Cobia) 1.31 

35 Sh'aam شعم Acanthopagrus latus (Yellowfin seabream) 1.28 

36 Biyah  بياح Moolgarda seheli (Bluespot mullet) 1.22 

37 Shinainuwa  شنينوة Cephalopholis hemistiktos (Yellowfin hind) 0.99 

38 Shaqra  شقره Lutjanus argentimaculatus (Mangrove red snap) 0.95 

39 Ebzeimi إبزيمي Scolopsis taeniata (Black-streaked monocle b) 0.86 

40 Ywaf  يواف Anodontostoma chacunda (Gizzard shad) 0.53 

41 Baasi  باسي Nemipterus bipunctatus (Threadfin bream) 0.48 

42 Wahra  وحرة Platycephalus indicus (Bartail flathead) 0.46 

43 Subaity  سبيطي Sparidentex hasta (Sobaity seabream) 0.44 

44 Umm El Rubian  أم الروبيان Thenus orientalis (Falt head locust lobster) 0.35 

45 Safi sneifi  صافي صنيفي Siganus luridus (Dusky spinefoot) 0.35 

46 Bertamah  برطامة Epinephelus multinotatus (White-blotched gro) 0.23 

47 Emaad  عماد Platax orbicularis (Orbicular batfish) 0.19 

48 Hagool  حاقول Tylosurus crocodilus crocodilu (Hound needle) 0.19 

49 Anfooz  عنفور Pomacanthus maculosus (Yellowbar angel fish) 0.17 

50 Battana  بطانة Crenidens crenidens (Monocle bream) 0.11 

51 Zieb  ذيب Terapon jarbua (Jarbua terapon) 0.08 

52 Lisan  لسان Brachirus orientalis (Oriental sole) 0.06 

53 Umm El Laban  أم اللبن Scolopsis taeniata (monocle bream) 0.04 

54 Hef  حف Chirocentrus dorab (Dorab wolf-herring) 0.01 
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55 Kasour  كاسور Saurida tumbil (Greater lizard fish) 0.00 

 
 

9.7 Compound trend of variables 

 

In examining trends of basic fisheries variables such as catch, effort, values, etc. we often 

encounter the same question as in ranking: the individual trends are clear but there is no easy 

indication as to what is the general direction of the overall fisheries. For instance we may have a 

rising catch trend accompanied with stable values and declining effort. The question arises as to 

whether the general situation could be described by one trend line. 

 

The approach used here resembles the one used for multi-variate ranking. First the data are 

normalized (using however a slightly different scheme) and then geometrical distances are 

calculated in order to plot a single curve.  

 

9.8 Normalization of values 

 

Let us assume a list of m elements representing periods: ie , i=1…m. Such periods are usually 

months covering a year span, e.g. January 2012 – December 2015. In such a case m=4 years x 12 

months = 48 periods. 

 

We also assume that each period ie  is associated to an array of n values 
ijv , j=1…n for n fisheries 

variables that are examined over the years and months.  

 

Since the columns of the matrix 
ijv  have different value ranges (imagine for instance catch values 

in Kg, effort values in boat-gear days, etc.), the first step is to normalize all values of each variable 

across periods.  

 

This time a normalization scheme is used by means of which each value  
ijv  is transformed to the 

ratio: 

 

j

ij

ij
V

v
u           (9.8.1) 

 

where jV  is the arithmetic mean of a variable j over all periods i: 

 





m

1i

ijj v
m

1
V          (9.8.2) 

 

The resulting normalized values iju  are dimensionless and share similar value scales. Next step 

involves the definition of a “low point” on the basis of which a single trend will be drawn. This n-

dimensional point will be formed by selecting the minimum values of the variables of positive 
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impact (e.g. catch) and the maximum ones for those with negative impact (such as effort). In other 

words each element jb  of point ( jb , jb , … , nb ) will be defined as: 

 

(Minb j  ijv ) for variables of positive impact     (9.8.3) 

 

(Maxb j  ijv ) for variables of negative impact     (9.8.4) 

 

 

 

9.9 Distances from low point 

 

For each period i=1…m the following distance from low point is computed: 

 

 



n

1j

2

jiji )bu(d          (9.9.1) 

 

Next the average distance D  is defined as: 

 





m

1i

id
m

1
D           (9.9.2) 

 

and is used to normalize distances as follows: 

 

D

d
d i*

i            (9.9.3) 

 

The values of normalized distances constitute the single trend aimed by this method. 

 

Figure 9.9.1 illustrates an example of multi-variate trend. In this example the variables to be 

combined are total catch, total value and total fishing effort. In formulating the low point described 

by expressions 9.8.3 and 9.8.4 the first expression was used for catch and values, considering that 

the impact of these two variables is positive for high values. Instead fishing effort is used as a 

direct index of fishing pressure and as an indirect index of running costs; this means that low effort 

values have a positive impact while high ones have a negative impact. Hence for effort expression 

9.8.4 was used. 
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Figure 9.9.1 – Illustrating the single trend (black line) of total catch, total value and total effort for the period 

January 2013 – December 2014.  
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Chapter 10: Clusters of fishing patterns 

 
10.1 Introduction 

 

Clustering1 of variables using multiple quantitative criteria is a commonly used statistical 

technique in fisheries applications. There is a wide variety of such applications ranging from 

“static” cases (e.g. clustering of boat-gears types according to constant characteristics) to 

“dynamic” ones where the criteria vary with time. Irrespective of the type of application, however, 

the theoretical concepts and approaches remain the same and these will be reviewed in the present 

chapter.  

  

10.2 Elements, multiple criteria and normalization 

 

Let us assume a list of m elements denoted by 
ie , i=1…m. We also assume that each element 

ie  

is associated to an array of n values 
ijv , j=1…n, which constitute numerical criteria of similarity 

amongst the elements. In this manner the elements 
ie  with coordinates  

ijv  represent m points in 

the n-dimensional space. 

Since the columns (i.e. criteria values) of the matrix 
ijv  have different value ranges, the first step 

is to normalize these columns by mapping them to a common numerical scale. Generally a 

convenient scale is that of 0-1. Such a mapping is achieved by the following computations: 

 

 Determining the minimum and maximum values 
jmin  and 

jmax  for each column j. 

 All values 
ijv  will be mapped to normalized values 

iju  using the formula: 

            
jj

jij

ij
minmax

minv
u




         (10.2.1) 

 Expression 10.2.1 indicates that each column will have values between 0 and 1 inclusive. 

  

                                                 
1 In this document the Wroclaw Taxonomy technique is used. Originally, the method was developed for biological 

analyses but it was found quite suitable for other applications using quantitative clustering criteria. 
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10.3 Distance matrix, cluster pairs and clustering 

 

For every two elements 
ke and 

le with k ≠ l we use their normalized coordinates to calculate their 

geometrical distance
kld : 

 





n

1j

2

ljkjkl )uu(d         (10.3.1)  

 

This new matrix of distances has the following properties: 

 

 It contains m(m-1) distances (since zeroes are not included). 

 It is symmetrical, i.e. 
kld =

lkd . 

Next we search for pairs of points 
ke  and 

le  such that 
le  is the closest to 

ke and at the same time 

ke  is the closest to 
le . Such pairs of points are called cluster pairs because they constitute the 

cores around which other points will be clustered. 

 

Assuming that N such pairs have been identified, then the method will result in N clusters, each of 

which will be formed as follows. 

 

 The mid point of each cluster pair (
ke , le ) is formed with coordinates: 

2

uu ljkj  ,   j=1,2, … , n 

 Each point ie  that is not a cluster pair, will be clustered around the pair for which its mid 

point is the closest to ie . 

In the specific case of fishing patterns along periods, the method also calculates degrees of 

resemblance between points in percentage form (refer to Tables 10.4 and 10.5). These indexes 

result from the proportion of months over 12 months that the normalized values of two points stat 

in the same value range of either 0-0.25, 0.26-0.5, 0.51-0.75, 0.76-1.  
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Numerical Examples 
 

10.4 Clustering of species CPUE’s (2014 data). 

 

  Clustered elements  Element with closest resemblance 
Association 
strength (%) 

Cluster 
1 Baasi  باسي   Nemipterus bipunctatus (Threadfin bream) Kasour  كاسور   Saurida tumbil (Greater lizard fish) 91.7 

  Kasour  كاسور   Saurida tumbil (Greater lizard fish)   91.7 

        
Cluster 
2 Biyah  بياح   Moolgarda seheli (Bluespot mullet) Wahra  وحرة   Platycephalus indicus (Bartail flathead) 100.0 

  Wahra  وحرة   Platycephalus indicus (Bartail flathead)   100.0 

        
Cluster 
3 

Dal'ah ضلعه   Scomberoides commersonnianus 
(Queenfish) Naiser  نيسر   Lutjanus fulviflamma (Dory snapper) 83.3 

  Naiser  نيسر   Lutjanus fulviflamma (Dory snapper)   83.3 

  
Ebzeimi إبزيمي   Scolopsis taeniata (Black-streaked 
monocle b)   66.7 

  Karari  كراري   Atule mate (Yellowtail scad)   58.3 

  Ywaf  يواف   Anodontostoma chacunda (Gizzard shad)   41.7 

  
Zubaidi  زبيدي   Carangoides malabaricus (Malabar 
trevally)   75.0 

        
Cluster 
4 Gane  قين   Scarus ghobban (Blue-barred parrotfish) Jid  جد   Sphyraena flavicauda (Yellowtail barracuda) 91.7 

  Jid  جد   Sphyraena flavicauda (Yellowtail barracuda)   91.7 

  Hef  حف   Chirocentrus dorab (Dorab wolf-herring)   75.0 

  Jash  جش   Carangoides bajad (Orangespotted trevally)   66.7 

  Sooli  سولي   Lethrinus microdon (Smalltooth emperor)   75.0 

        
Cluster 
5 

Gargor  جرجور   Carcharhinus dussumieri (White cheek 
shark) Safi sneifi  صافي صنيفي   Siganus luridus (Dusky spinefoot) 91.7 

  
Safi sneifi  صافي صنيفي   Siganus luridus (Dusky 
spinefoot)   91.7 

        
Cluster 
6 

Hagool  حاقول   Tylosurus crocodilus crocodilu (Hound 
needle) 

Umm El Laban  أم اللبن   Scolopsis taeniata (monocle 
bream) 91.7 

  
Umm El Laban  أم اللبن   Scolopsis taeniata (monocle 
bream)   91.7 

  Battana  بطانة   Crenidens crenidens (Monocle bream)   66.7 

  
Rebeeb  ربيب   Gnathanodon speciosus (Gold 
toothless treval)   66.7 

        
Cluster 
7 

Hamour  هامور   Epinephelus coioides (Orange-spotted 
grouper) Khathaag  خثاق   Sepia pharaonis (Cuttle fish) 100.0 

  Khathaag  خثاق   Sepia pharaonis (Cuttle fish)   100.0 

  Bedha  بدحة   Gerres longirostris (silver-biddy)   66.7 

  
Fasker  فسكر   Acanthopagrus bifasciatus (Twobar 
seabream)   91.7 

  
Helali  هلالي   Plectorhinchus gaterinus (Blackspotted 
rubbe)   66.7 
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Sh'aam شعم   Acanthopagrus latus (Yellowfin 
seabream)   75.0 

  Shiem  شم   Arius thalassinus (Giant sea catfish)   83.3 

        
Cluster 
8 

Hamra حمره   Lutjanus malabaricus (Malabar blood 
snapper) N'aimia نعيمية   Pinjalo pinjalo (Pinjalo) 91.7 

  N'aimia نعيمية   Pinjalo pinjalo (Pinjalo)   91.7 

  
Anfooz  عنفور   Pomacanthus maculosus (Yellowbar 
angel fish)   66.7 

  Emaad  عماد   Platax orbicularis (Orbicular batfish)   75.0 

  
Semaan  سمان   Epinephelus bleekeri (Duskytail 
grouper)   75.0 

        
Cluster 
9 

Kobkob  قبقب   Portunus pelagicus (Blue swimmimg 
crab) Siken  سكن   Rachycentron canadum (Cobia) 66.7 

  Siken  سكن   Rachycentron canadum (Cobia)   66.7 

  Hamaam  حمام   Carangoides gymnostethus (Bludger)   58.3 

        
Cluster 
10 Koffar  كوفر   Argyrops spinifer (King soldier bream) Yanam  ينم   Plectorhinchus sordidus (Sordid rubberlip) 75.0 

  Yanam  ينم   Plectorhinchus sordidus (Sordid rubberlip)   75.0 

  
Kanaad  كنعد   Scomberomorus commerson (Spanish 
mackerel)   75.0 

  Zieb  ذيب   Terapon jarbua (Jarbua terapon)   75.0 

        
Cluster 
11 

Laden  لدن   Epinephelus polylepis (Smallscaled 
grouper) OTHER أنواع أخرى   (Miscellaneous) 100.0 

  OTHER أنواع أخرى   (Miscellaneous)   100.0 

  
Boukshina  بوقشينة   Lethrinus lentjan (Pink ear 
emperor)   66.7 

        
Cluster 
12 Lisan  لسان   Brachirus orientalis (Oriental sole) Subaity  سبيطي   Sparidentex hasta (Sobaity seabream) 100.0 

  Subaity  سبيطي   Sparidentex hasta (Sobaity seabream)   100.0 

  Tabaan  تبان   Euthynnus affinis (Kawakawa)   83.3 

        
Cluster 
13 

Qurqufan  قرقفان   Rhabdosargus haffara (Haffara 
seabream) TOTALS 66.7 

  TOTALS   66.7 

  Farsh  فرش   Diagramma pictum (Painted sweetlips)   41.7 

  Sh'ari شعري   Lethrinus nebulosus (Sprankled emperor)   50.0 

        
Cluster 
14 

Saafi  صافي   Siganus canaliculatus (Whit-spott 
spinefoot) 

Sultan Ibrahim  سلطان إبراهيم   Parupeneus marga (Pearly 
goatfish) 75.0 

  
Sultan Ibrahim  سلطان إبراهيم   Parupeneus marga 
(Pearly goatfish)   75.0 

  
Shaqra  شقره   Lutjanus argentimaculatus (Mangrove 
red snap)   50.0 

  
Shinainuwa  شنينوة   Cephalopholis hemistiktos 
(Yellowfin hind)   41.7 

        
Cluster 
15 

Saal  صال   Carangoides chrysophrys (Longnose 
trevally) 

Umm El Rubian  أم الروبيان   Thenus orientalis (Falt head 
locust lobster) 91.7 
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  Umm El Rubian  أم الروبيان   Thenus orientalis (Falt head locust lobster) 91.7 

  
Bertamah  برطامة   Epinephelus multinotatus (White-
blotched gro)   83.3 

 

 

 
Figure 10.4.1 Graphical example of the resemblance pattern of Cluster 7, depicting Orange-spotted grouper 

(blue line), Sepia pharaonis (red) and Twobar seabream (green).  
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10.5 Clustering of species prices (2014 data) 
 

  Clustered elements  Element with closest resemblance 
Association strength 
(%) 

Cluster 
1 

Anfooz  عنفور Pomacanthus maculosus (Yellowbar 
angel fish) Wahra  وحرة Platycephalus indicus (Bartail flathead) 100.0   

  Wahra  وحرة Platycephalus indicus (Bartail flathead)   100.0   

  
Ebzeimi إبزيمي Scolopsis taeniata (Black-streaked 
monocle b)   91.7   

  Emaad  عماد Platax orbicularis (Orbicular batfish)   75.0   

          
Cluster 
2 Battana  بطانة Crenidens crenidens (Monocle bream) Khathaag  خثاق Sepia pharaonis (Cuttle fish) 83.3   

  Khathaag  خثاق Sepia pharaonis (Cuttle fish)   83.3   

          
Cluster 
3 Bedha  بدحة Gerres longirostris (silver-biddy) Farsh  فرش Diagramma pictum (Painted sweetlips) 66.7   

  Farsh  فرش Diagramma pictum (Painted sweetlips)   66.7   

  Gane  قين Scarus ghobban (Blue-barred parrotfish)   58.3   

  Jash  جش Carangoides bajad (Orangespotted trevally)   41.7   

  Kobkob  قبقب Portunus pelagicus (Blue swimmimg crab)   58.3   

          
Cluster 
4 Boukshina  بوقشينة Lethrinus lentjan (Pink ear emperor) N'aimia نعيمية Pinjalo pinjalo (Pinjalo) 100.0   

  N'aimia نعيمية Pinjalo pinjalo (Pinjalo)   100.0   

  
Bertamah  برطامة Epinephelus multinotatus (White-
blotched gro)   91.7   

  Hamaam  حمام Carangoides gymnostethus (Bludger)   75.0   

  Lisan  لسان Brachirus orientalis (Oriental sole)   66.7   

  Saal  صال Carangoides chrysophrys (Longnose trevally)   58.3   

  Semaan  سمان Epinephelus bleekeri (Duskytail grouper)   100.0   

          
Cluster 
5 

Fasker  فسكر Acanthopagrus bifasciatus (Twobar 
seabream) Koffar  كوفر Argyrops spinifer (King soldier bream) 91.7   

  Koffar  كوفر Argyrops spinifer (King soldier bream)   91.7   

  
Hamour  هامور Epinephelus coioides (Orange-spotted 
grouper)   66.7   

  Hef  حف Chirocentrus dorab (Dorab wolf-herring)   83.3   

  Kasour  كاسور Saurida tumbil (Greater lizard fish)   75.0   

  
Qurqufan  قرقفان Rhabdosargus haffara (Haffara 
seabream)   83.3   

  Sh'aam شعم Acanthopagrus latus (Yellowfin seabream)   66.7   

  Sh'ari شعري Lethrinus nebulosus (Sprankled emperor)   75.0   

  TOTALS   66.7   

          
Cluster 
6 

Gargor  جرجور Carcharhinus dussumieri (White cheek 
shark) 

Kanaad  كنعد Scomberomorus commerson (Spanish 
mackerel) 83.3   

  
Kanaad  كنعد Scomberomorus commerson (Spanish 
mackerel)   83.3   

  
Safi sneifi  صافي صنيفي Siganus luridus (Dusky 
spinefoot)   66.7   
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Shaqra  شقره Lutjanus argentimaculatus (Mangrove red 
snap)   66.7   

  Siken  سكن Rachycentron canadum (Cobia)   83.3   

          
Cluster 
7 

Hagool  حاقول Tylosurus crocodilus crocodilu (Hound 
needle) Jid  جد Sphyraena flavicauda (Yellowtail barracuda) 83.3   

  Jid  جد Sphyraena flavicauda (Yellowtail barracuda)   83.3   

  Baasi  باسي Nemipterus bipunctatus (Threadfin bream)   58.3   

  Biyah  بياح Moolgarda seheli (Bluespot mullet)   83.3   

  
Dal'ah ضلعه Scomberoides commersonnianus 
(Queenfish)   41.7   

  
Helali  هلالي Plectorhinchus gaterinus (Blackspotted 
rubbe)   50.0   

  Umm El Rubian  أم الروبيان Thenus orientalis (Falt head locust lobster) 50.0   

  
Zubaidi  زبيدي Carangoides malabaricus (Malabar 
trevally)   50.0   

          
Cluster 
8 

Hamra حمره Lutjanus malabaricus (Malabar blood 
snapper) Yanam  ينم Plectorhinchus sordidus (Sordid rubberlip) 75.0   

  Yanam  ينم Plectorhinchus sordidus (Sordid rubberlip)   75.0   

  Subaity  سبيطي Sparidentex hasta (Sobaity seabream)   66.7   

  OTHER أنواع أخرى (Miscellaneous)   41.7   

          
Cluster 
9 Laden  لدن Epinephelus polylepis (Smallscaled grouper) Sooli  سولي Lethrinus microdon (Smalltooth emperor) 100.0   

  Sooli  سولي Lethrinus microdon (Smalltooth emperor)   100.0   

  
Shinainuwa  شنينوة Cephalopholis hemistiktos (Yellowfin 
hind)   91.7   

  Tabaan  تبان Euthynnus affinis (Kawakawa)   66.7   

  Ywaf  يواف Anodontostoma chacunda (Gizzard shad)   50.0   

          
Cluster 
10 

Rebeeb  ربيب Gnathanodon speciosus (Gold toothless 
treval) 

Sultan Ibrahim  سلطان إبراهيم Parupeneus marga (Pearly 
goatfish) 91.7   

  
Sultan Ibrahim  سلطان إبراهيم Parupeneus marga (Pearly 
goatfish)   91.7   

  Karari  كراري Atule mate (Yellowtail scad)   83.3   

  Naiser  نيسر Lutjanus fulviflamma (Dory snapper)   58.3   

  Saafi  صافي Siganus canaliculatus (Whit-spott spinefoot)   75.0   

  Shiem  شم Arius thalassinus (Giant sea catfish)   83.3   

  
Umm El Laban  أم اللبن Scolopsis taeniata (monocle 
bream)   91.7   

  Zieb  ذيب Terapon jarbua (Jarbua terapon)   83.3   
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Figure 10.5.1 Graphical example of the resemblance pattern of Cluster 4, depicting Pink ear emperor (blue 

line), Pinjalo (red) and Duskytail grouper (green).  

 


